首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  1996年   1篇
  1981年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Collagens of either soft connective or mineralized tissues are subject to continuous remodeling and turnover. Undesired cleavage can be the result of an imbalance between proteases and their inhibitors. Owing to their superhelical structure, collagens are resistant to many proteases and matrix metalloproteinases (MMPs) are required to initiate further degradation by other enzymes. Several MMPs are known to degrade collagens, but the action of MMP-12 has not yet been studied in detail. In this work, the potential of MMP-12 in recognizing sites in human skin collagen types I and III has been investigated. The catalytic domain of MMP-12 binds to the triple helix and cleaves the typical sites -Gly775-Leu776- in α-2 type I collagen and -Gly775-Ile776- in α-1 type I and type III collagens and at multiple other sites in both collagen types. Moreover, it was observed that the region around these typical sites contains comparatively less prolines, of which some have been proven to be only partially hydroxylated. This is of relevance since partial hydroxylation in the vicinity of a potential scissile bond may have a local effect on the conformational thermodynamics with probable consequences on the collagenolysis process. Taken together, the results of the present work confirm that the catalytic domain of MMP-12 alone binds and degrades collagens I and III.  相似文献   
2.
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I-III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769-783 from type I-III collagens, the second inserted α1(II) collagen residues 763-768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784-792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased k(cat)/K(m) and k(cat) for MMP-1. MMP-13 showed the opposite behavior with a decreased k(cat)/K(m) and k(cat) and a greatly improved K(m) in response to the C-terminal residues. Insertion of the N-terminal residues enhanced k(cat)/K(m) and k(cat) for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced K(m) and dramatically decreased k(cat), resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs.  相似文献   
3.
Borrelia burgdorferi possesses a collagenolytic activity   总被引:2,自引:0,他引:2  
Abstract Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi , an invasive spirochete. B. burgdorferi has a predilection for collagenous tissue and one major clinical manifestation of the disease is arthritis. We have identified a collagenolytic activity in B. burgdorferi detergent lysates using iodinated gelatin as well as iodinated pepsinized human collagen types II and IV as protein substrates. In addition, we describe several proteolytic activities in B. burgdorferi with molecular masses greater than 200 kDa on sodium dodecyl sulfate polyacrylamide gels containing copolymerized gelatin. We propose that the collagenolytic activity of B. burgdorferi has a role in invasion, in the pathogenesis of Lyme arthritis, and perhaps also in other manifestations of Lyme borreliosis.  相似文献   
4.
The collagenolytic activity associated with insoluble collagen fibers separated from homogenates of inflamed paws from rats with adjuvant arthritis was quantitated using EDTA-sensitive solubilization of hydroxyproline as a measure of activity. Approximately 60% of the solubilized hydroxyproline was associated with dialyzable products. The level of collagenolytic activity in the paws increased with time after the induction of adjuvant arthritis and paralleled to a large extent the development of inflammation in both the adjuvant injected (right) hind paw and in the non-injected, contralateral paw. By day 26, the level of free collagenolytic activity in the injected paw had increased to a level 30 times normal while that in the contralateral paw had increased to a level 10 times normal. Treatment of the residues from the injected paws with trypsin resulted in the activation of a latent collagenolytic activity which, on day 26, accounted for approximately 50% of the total activity. The elevated level of collagen prolyl hydroxylase in the inflamed paw suggested that the rate of collagen synthesis was also increased. The activity of β-glucuronidase increased in the inflamed paw with time after the induction of adjuvant arthritis while that of cathepsin G was elevated as compared to normal in paws removed, 5 but not 22 days after the induction of adjuvant arthritis. The inflamed paw of the adjuvant rat may represent a useful system in which to study the role of collagenolytic enzymes in the destruction of connective tissue by inflammatory lesions.  相似文献   
5.
Catalysis of collagen degradation by matrix metalloproteinase 1 (MMP-1) has been proposed to critically rely on flexibility between the catalytic (CAT) and hemopexin-like (HPX) domains. A rigorous assessment of the most readily accessed conformations in solution is required to explain the onset of substrate recognition and collagenolysis. The present study utilized paramagnetic NMR spectroscopy and small angle x-ray scattering (SAXS) to calculate the maximum occurrence (MO) of MMP-1 conformations. The MMP-1 conformations with large MO values (up to 47%) are restricted into a relatively small conformational region. All conformations with high MO values differ largely from the closed MMP-1 structures obtained by x-ray crystallography. The MO of the latter is ∼20%, which represents the upper limit for the presence of this conformation in the ensemble sampled by the protein in solution. In all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. Thus, overall analysis of the highest MO conformations indicated that MMP-1 in solution was poised to interact with collagen and then could readily proceed along the steps of collagenolysis.  相似文献   
6.
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-l-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23–P23′ subsites of collagenous substrates.  相似文献   
7.
Remodeling of collagen by matrix metalloproteinases (MMPs) is crucial to tissue homeostasis and repair. MMP-13 is a collagenase with a substrate preference for collagen II over collagens I and III. It recognizes a specific, well-known site in the tropocollagen molecule where its binding locally perturbs the triple helix, allowing the catalytic domain of the active enzyme to cleave the collagen α chains sequentially, at Gly775–Leu776 in collagen II. However, the specific residues upon which collagen recognition depends within and surrounding this locus have not been systematically mapped. Using our triple-helical peptide Collagen Toolkit libraries in solid-phase binding assays, we found that MMP-13 shows little affinity for Collagen Toolkit III, but binds selectively to two triple-helical peptides of Toolkit II. We have identified the residues required for the adhesion of both proMMP-13 and MMP-13 to one of these, Toolkit peptide II-44, which contains the canonical collagenase cleavage site. MMP-13 was unable to bind to a linear peptide of the same sequence as II-44. We also discovered a second binding site near the N terminus of collagen II (starting at helix residue 127) in Toolkit peptide II-8. The pattern of binding of the free hemopexin domain of MMP-13 was similar to that of the full-length enzyme, but the free catalytic subunit bound none of our peptides. The susceptibility of Toolkit peptides to proteolysis in solution was independent of the very specific recognition of immobilized peptides by MMP-13; the enzyme proved able to cleave a range of dissolved collagen peptides.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号