首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   50篇
  国内免费   44篇
  2023年   13篇
  2022年   27篇
  2021年   12篇
  2020年   19篇
  2019年   27篇
  2018年   32篇
  2017年   22篇
  2016年   13篇
  2015年   23篇
  2014年   69篇
  2013年   71篇
  2012年   67篇
  2011年   66篇
  2010年   40篇
  2009年   69篇
  2008年   57篇
  2007年   64篇
  2006年   60篇
  2005年   51篇
  2004年   43篇
  2003年   45篇
  2002年   35篇
  2001年   24篇
  2000年   23篇
  1999年   26篇
  1998年   18篇
  1997年   17篇
  1996年   19篇
  1995年   10篇
  1994年   15篇
  1993年   17篇
  1992年   19篇
  1991年   17篇
  1990年   12篇
  1989年   11篇
  1988年   11篇
  1987年   7篇
  1985年   53篇
  1984年   71篇
  1983年   51篇
  1982年   52篇
  1981年   48篇
  1980年   54篇
  1979年   38篇
  1978年   41篇
  1977年   36篇
  1976年   34篇
  1975年   28篇
  1974年   31篇
  1973年   21篇
排序方式: 共有1737条查询结果,搜索用时 62 毫秒
1.
2.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   
3.
It is now possible to examine in detail exchanges between sister chromatids (SCEs) and to attempt to investigate the relationships of such exchanges to aberration formation and DNA-repair mechanisms. The frequency of SCEs is dramatically increased by chemical mutagens and may reflect the level of DNA damage. Lymphocytes from patients with ataxia telangiectasis (AT) show high levels of spontaneous chromosome damage and are hypersentive to ionising radiations and it was of interest to examine the levels of SCE induced in these cells by various mutagens. The frequencies of SCE after treatment with X=rays or three chemical mutagens were equivalent to those in normal cells. The effects of fluorodeoxyuridine and deoxycytidine on SCE frequencies were also tested.  相似文献   
4.
Electrophysiological studies of cultured rat pancreatic β-cells using intracellular microelectrodes show that exogenous insulin over the range of 0.1–10.0 μg/ml inhibits the electrical activity due to 27.8 mM glucose in a dose-related manner. This inhibitory effect is manifested by a mean increase of the membrane potential from about ?20 to ?30 mV and inhibition of the manner of cells impaled showing spike activity from 60 to less than 10%. The inhibitory influence of insulin is rapid occuring within 5 min for the highest level used. The results provide evidence for a negative feedback role of insulin in regulating its own release.  相似文献   
5.
The phospholipids of intact microsomal membranes were hydrolysed 50% by phospholipase C of Clostridium welchii, without loss of the secretory protein contents of the vesicle, which are therefore not permeable to the phospholipase. Phospholipids extracted from microsomes and dispersed by sonication were hydrolysed rapidly by phospholipase C-Cl. welchii with the exception of phosphatidylinositol. Assuming that only the phospholipids of the outside of the bilayer of the microsomal membrane are hydrolysed in intact vesicles, the composition of this leaflet was calculated as 84% phosphatidylcholine, 8% phosphatidylethanolamine, 9% sphingomyelin and 4% phosphatidylserine, and that of the inner leaflet 28% phosphatidylcholine, 37% phosphatidylethanolamine, 6% phosphatidylserine and 5% sphingomyelin. Microsomal vesicles were opened and their contents released in part by incubation with deoxycholate (0.098%) lysophosphatidylcholine (0.005%) or treatment with the French pressure cell. Under these conditions, hydrolysis of the phospholipids by phospholipase C-Cl. welchii was increased and this was mainly due to increased hydrolysis of those phospholipids assigned to the inner leaflet of the bilayer, phosphatidylethanolamine and phosphatidylserine. Phospholipase A2 of bee venom and phospholipase C of Bacillus cereus caused rapid loss of vesicle contents and complete hydrolysis of the membrane phospholipids, with the exception of sphingomyelin which is not hydrolysed by the former enzyme.  相似文献   
6.
Cesium ions block potassium channels in biological membranes in a voltage dependent manner. For example, external cesium blocks inward current with little or no effect on outward current. Consequently, it produces a characteristic N-shaped current-voltage relationship. We have modeled this result by single file diffusion of ions in a narrow channel spanning the membrane with a special blocking site in the channel for cesium ions. The model enables us to make detailed comparisons of the effects of cesium on potassium channels in different types of biological membranes.  相似文献   
7.
8.
9.
Summary In the small intestine of the pig, neuromedin U (NMU)-immunoreactivity was mainly confined to the nerve plexus of the inner submucosal and mucosal regions. After colchicine treatment, a high number of immunoreactive nerve cell bodies was observed in the plexus submucosus internus (Meissner), whereas only a low number was found in the plexus submucosus externus (Schabadasch). The plexus myentericus as well as the aganglionic nerve meshworks in the circular and longitudinal smooth muscle layers almost completely lacked NMU-immunoreactivity. Double-labeling experiments demonstrated the occurrence of distinct NMU-containing neuron populations in the plexus submucosus internus: (1) relatively large type-II neurons revealing immunoreactivity for NMU and calcitonin gene-related peptide (CGRP) and/or substance P (SP); (2) a group of small NMU- and SP-immunoreactive neurons; (3) a relatively low number of small neurons displaying immunoreactivity for NMU but not for SP. Based on its distributional pattern, it is concluded that NMU plays an important role in the regulation and control of mucosal functions.  相似文献   
10.
Summary Colicin Ia forms voltage-dependent channels when incorporated into planar lipid bilayers. A membrane containing many Colicin Ia channels shows a conductance which is turned on when high positive voltages (>+10 mV) are applied to thecis side (side to which the protein is added). The ionic current flowing through the membrane in response to a voltage step shows at first an exponential and then a linear rise with time. The relationship between the steady-state conductance, achieved immediately after the exponential portion, and voltage is S-shaped and is adequately fit by a Boltzmann distribution. The time constant () of the exponential is also dependent on voltage, and the relation between these two parameters is asymmetric aroundV o (voltage at which half of the channels are open). In both cases the steepness of the voltage dependence, a consequence of the number of effective gating particles (n) present in the channel, is greatly influenced by the pH of the bathing solutions. Thus, increasing the pH leads to a reduction inn, while acidic pH's have the opposite effects. This result is obtained either by changing the pH on both sides of the membrane or on only one side, be itcis orrans. On the other hand, changing pH on only one side by addition of an impermeant buffer fails to induce any change inn. At the single-channel level, pH had an effect both on the unitary conductance, doubling it in going from pH 4.5 to 8.2, as well as on the fraction of time the channels stay open,F (v). For a given voltage,F (v) is clearly diminished by increasing the pH. This titration of the voltage sensitivity leads to the conclusion that gating in the Colicin Ia molecule is accomplished by charged amino-acid residues present in the protein molecule. Our results also support the notion that these charged groups are inside the aqueous portion of the channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号