首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414–530) and CC2 (aa 530–630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.  相似文献   
2.
Hec1 and Nuf2, core components of the NDC80 complex, are essential for kinetochore-microtubule attachment and chromosome segregation. It has been shown that both Hec1 and Nuf2 utilize their coiled-coil domains to form a functional dimer; however, details of the consequential significance and structural requirements to form the dimerization interface have yet to be elucidated. Here, we showed that Hec1 required three contiguous heptad repeats from Leu-324 to Leu-352, but not the entire first coiled-coil domain, to ensure overall stability of the NDC80 complex through direct interaction with Nuf2. Substituting the hydrophobic core residues, Leu-331, Val-338, and Ile-345, of Hec1 with alanine completely eliminated Nuf2 binding and blocked mitotic progression. Moreover, unlike most coiled-coil proteins, where the buried positions are composed of hydrophobic residues, Hec1 possessed an unusual distribution of glutamic acid residues, Glu-334, Glu-341, and Glu-348, buried within the interior dimerization interface, which complement with three Nuf2 lysine residues: Lys-227, Lys-234, and Lys-241. Substituting these corresponding residues with alanine diminished the binding affinity between Hec1 and Nuf2, compromised NDC80 complex formation, and adversely affected mitotic progression. Taken together, these findings demonstrated that three buried glutamic acid-lysine pairs, in concert with hydrophobic interactions of core residues, provide the major specificity and stability requirements for Hec1-Nuf2 dimerization and NDC80 complex formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号