首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  8篇
  2013年   3篇
  2012年   1篇
  2001年   1篇
  1997年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A rapid, sensitive method has been developed to detect antibody-antigen complexes on “Western blots.” The methods of H. Towbin, T. Staehlin, and J. Gordon were used to separate and blot the antigens onto nitrocellulose. The remaining sites of attachment were blocked and the nitrocellulose was washed with polyoxyethylenesorbitan monolaurate (Tween 20). The blot was then reacted with the antiserum or hybridoma supernate to be tested. After the antigen-antibody reaction was completed, the blot was washed and treated with anti-antibody which has been conjugated to alkaline phosphatase. The alkaline phosphatase was detected by the reduction of the tetrazolium salt to diformazan by the hydrogen ions released in the formation of indigo by the reaction of the phosphatase on the indoxyl phosphate. The advantages of this method over previously described techniques are (1) use of Tween 20 allows the blot to be stained with Coomassie blue, (2) the substrates of the alkaline phosphatase reaction are stable for long periods of time, (3) the reaction products form an intense blue color which does not fade, (4) the resolution is extremely good with little to no band broadening, (5) the reaction is sensitive to picogram quantities of antigen, and (6) the reaction is quantitative.  相似文献   
2.
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, koff). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (koff). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.  相似文献   
3.
Growing cultures of Methanobacterium thermoautotrophicum were supplemented with [U-14C]adenosine or [1-14C]adenosine. 7,8-Didemethyl-8-hydroxy-5-deazariboflavin (factor F0) and 7-methylpterin were isolated from the culture medium. Hydrolysis of cellular RNA yielded purine and pyrimidine nucleotides. The ribose side chain of proffered adenosine is efficiently incorporated into cellular adenosine and guanosine nucleotide pools but not into pyrimidine nucleotides. Thus, M. thermoautotrophicum can utilize exogenous adenosine by direct phosphorylation without hydrolysis of the glycosidic bond, and AMP can be efficiently converted to GMP. Factor F0 and 7-methylpterin had approximately the same specific activities as the purine nucleotides. It follows that the ribityl side chain of factor F0 is derived from the ribose side chain of a nucleotide precursor by reduction. The pyrazine ring of methanopterin is formed by ring expansion involving the ribose side chain of the precursor, GTP.Abbreviations Factor F0 8-hydroxy-6,7-didemethyl-5-deazariboflavin - APRT adenine phosphoribosyltransferase - GPRT guanine phosphoribosyltransferase - PRPP phosphoribosylpyrophosphate - HPLC high performance liquid chromatography  相似文献   
4.
Ashok K. Pullikuth  Sarjeet S. Gill   《Gene》1997,200(1-2):163-172
Dihydrolipoamide dehydrogenase (E3) is a flavoprotein component of multi-enzyme complexes catalyzing oxidative decarboxylation of -ketoacids in the Krebs' cycle. We have cloned a 2.4-kb E3 cDNA from an arthropod, Manduca sexta, that codes for 497 amino acids and translates to a 51-kDa protein in vitro. Sequences at and around the dinucleotide binding domains, disulfide active site and the C-terminal interface domain involved in substrate binding are highly conserved in Manduca E3. Phylogenetic analysis of protein sequences from the flavoprotein class of disulfide oxidoreductases family of enzymes suggests that in spite of the homologous nature of E3 and glutathione reductase (goR) in sequence and structure, E3 shares a common ancestor with mercuric reductase (merA), whereas goR is more related to trypanothione reductase (tryR) than to other members. All members, except goRs, seemed to be monophyletic. Plant goRs seemed to have arisen differently and are more closely related to tryRs than to bacterial and vertebrate goRs. Earlier speculation on the nature of origin of E3 in Pseudomonas is not supported by phylogenetic data. A possible structural relationship of Manduca E3 to other pyridine-binding proteins, such as the neurotransmitter transporters and channels, is proposed.  相似文献   
5.
The results of a detailed bioinformatic search for ribonucleotidyl coenzyme biosynthetic sequences in DNA- and RNA viral genomes are presented. No RNA viral genome sequence available as of April 2011 appears to encode for sequences involved in coenzyme biosynthesis. In both single- and double-stranded DNA viruses a diverse array of coenzyme biosynthetic genes has been identified, but none of the viral genomes examined here encodes for a complete pathway. Although our conclusions may be constrained by the unexplored diversity of viral genomes and the biases in the construction of viral genome databases, our results do not support the possibility that RNA viruses are direct holdovers from an ancient RNA/protein world. Extrapolation of our results to evolutionary epochs prior to the emergence of DNA genomes suggest that during those early stages living entities may have depended on discontinuous genetic systems consisting of multiple small-size RNA sequences.  相似文献   
6.
Oxidative stress is an unavoidable byproduct of aerobic life. Molecular oxygen is essential for terrestrial metabolism, but it also takes part in many damaging reactions within living organisms. The combination of aerobic metabolism and iron, which is another vital compound for life, is enough to produce radicals through Fenton chemistry and degrade cellular components. DNA degradation is arguably the most damaging process involving intracellular radicals, as DNA repair is far from trivial. The assay presented in this article offers a quantitative technique to measure and visualize the effect of molecules and enzymes on radical-mediated DNA damage.The DNA protection assay is a simple, quick, and robust tool for the in vitro characterization of the protective properties of proteins or chemicals. It involves exposing DNA to a damaging oxidative reaction and adding varying concentrations of the compound of interest. The reduction or increase of DNA damage as a function of compound concentration is then visualized using gel electrophoresis. In this article we demonstrate the technique of the DNA protection assay by measuring the protective properties of the DNA-binding protein from starved cells (Dps). Dps is a mini-ferritin that is utilized by more than 300 bacterial species to powerfully combat environmental stressors. Here we present the Dps purification protocol and the optimized assay conditions for evaluating DNA protection by Dps.  相似文献   
7.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.     相似文献   
8.
Many of the biosynthetic pathways, especially those leading to the coenzymes, must have originated very early, perhaps before enzymes were available to catalyze their synthesis. While a number of enzymatic reactions in metabolism are known to proceed nonenzymatically, there are no examples of entire metabolic sequences that can be achieved in this manner. The most primitive pathway for nicotinic acid biosynthesis is the reaction of aspartic acid with dihydroxyacetone phosphate. We report here that nicotinic acid (NAc) and its metabolic precursor, quinolinic acid (QA), are produced in yields as high as 7% in a six-step nonenzymatic sequence from aspartic acid and dihydroxyacetone phosphate (DHAP). The biosynthesis of ribose phosphate could have produced DHAP and other three carbon compounds. Aspartic acid could have been available from prebiotic synthesis or from the ribozyme synthesis of pyrimidines. These results suggest that NAD could have originated in the RNA world and that the nonenzymatic biosynthesis of the cofactor nicotinamide could have been an inevitable consequence of life based on carbohydrates and amino acids. The enzymes of the modern pathway were later added in any order. Received: 22 May 2000 / Accepted: 7 August 2000  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号