首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2013年   2篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.

Fouling-release coatings prevent fouling of ships' hulls through hydrodynamic forces generated as the ship moves through the water. The effectiveness of such coatings may be evaluated by measuring the adhesion strength of settled organisms, e.g. barnacles. The influence of desiccation of the barnacle adhesive on such measurements was investigated. Shear forces required to remove barnacles of the genus Balanus increased during the course of desiccation up to the point when the barnacles suddenly self-detached. The increase was thought to be due to the rising cohesive strength of the adhesive. Growing tensile forces within the weakly cross-linked adhesive, however, are suggested to have led to self-detachment. The shear forces required to remove barnacles of the genus Elminius were generally low and did not differ significantly during the course of desiccation. The different results may be attributed to specific base morphologies. It was concluded that measuring the adhesion strength of members of the Balanidae on non-stick surfaces in air could produce flawed results due to the influence of desiccation of the barnacle adhesive. The investigations have also provided new insights into the characteristics of barnacle adhesive.  相似文献   
2.
Barrier and surface properties of chitosan-coated greaseproof paper   总被引:2,自引:0,他引:2  
Greaseproof papers with different air permeances were coated with chitosan, both on a bench scale and on a pilot scale to study the conditions necessary to obtain a packaging material with good barrier properties towards oxygen, nitrogen, carbon dioxide and air. In addition, barrier properties against grease and water were measured. The results showed that an oxygen permeability in the same range as that of poly(ethylene terephthalate) was obtained at coat weights exceeding 5 g/m2. The oxygen permeability was not substantially affected by temperature changes, provided that the air permeance of the base paper was low. Carbon dioxide and nitrogen permeabilities were low enough to be measurable only at a coat weight exceeding 5 g/m2 and only on the two base papers with the lowest air permeance. The mechanical properties were characterized by tensile strength and fracture strain. The tensile strength was not affected by the coat weight, whereas the fracture strain was highest for coat weights exceeding 5 g/m2. High grease resistance values were also obtained at this coat weight, whereas the water resistance deteriorated slightly due to the hygroscopic character of the chitosan. However, a coat weight as high as 5 g/m2 could only be achieved on a bench scale. On a pilot scale, the maximum coat weight was 0.2 g/m2 because the solids content of the coating solution used was limited to 1.0 wt% due to the high molecular weight of the chitosan used and the resultant high viscosity of the polymer solution. The coating on a pilot scale was performed using the metered size press technique.  相似文献   
3.
Enzymatic polymerization on the surface of functionalized cellulose fibers   总被引:1,自引:0,他引:1  
Enzymatic coating of functionalized cellulose fibers with catechol was performed in the presence of Trametes hirsuta laccase. Cellulose functionalization was done by covalent fixation of aromatic amines onto the cellulose surface using a dyeing procedure with C.I. Reactive Black 5 (RB5) followed by reduction with sodium hydrosulfite. Cellulase enzymes were used on coated and control samples to obtain the analytes linked with the soluble sugars in solution, to prove the reaction concepts described in this paper. Hydrolyzed coated-cellulose showed lower concentration of reducing sugars (1188 mg/L) than control samples (2011 mg/L). The structures of these compounds were checked by LC/MS analysis confirming the presence of functionalized glucose and cellobiose units coupled to poly(catechol) molecules (m/z 580 and m/z 633). Alkali extraction method showed to be very promising to coat cellulose fibers with phenols in the presence of enzymes, at mild conditions of temperature and pH.  相似文献   
4.
Microbial colonization of metals and alloys of industrial usage takes place through the formation of biofilms made of bacteria, extracellular polymeric substances (EPS) and mainly water. These biological deposits can drastically modify the corrosion behavior of structural metals and alloys enhancing localized alterations in the type and concentrations of ions, pH, and oxygen levels. However, biofilms also facilitate the formation of diffusional barriers to the exchange of chemical species from and towards the metal/solution interface. Problems due to biocorrosion and biofouling of industrial systems range from heavy microbiological contamination with consequent energy and efficiency losses to structural failures owing to corrosion.The use of appropriate monitoring strategies complemented with field and laboratory microbiological techniques is necessary to reach a proper understanding of the effects derived from microbiological activity and the role of biofilms in the corrosion reaction to later implement effective control and preventive countermeasures. It must be emphasized that this assessment should be made for each industrial system, considering its previous history, present operational conditions, physicochemical composition of the intake water and the number and identity of microbial contaminants.Cleaning procedures, most relevant biocides and other methods for prevention and control of biocorrosion like coatings, and cathodic protection are successively described. Updated information about monitoring strategies is also included in the final part of the paper.  相似文献   
5.
Biodeterioration of external architectural paint films - A review   总被引:1,自引:0,他引:1  
This paper presents a review of the biodeterioration of architectural paint films by bacteria, fungi and algae, concentrating on external films. 107 references are cited in the following sections: 1. Microbiota of paint films - resident microflora, colonization and biofilm formation; 2. Effects of environment on biofilm formation and survival; 3. Influence of paint formulation on colonization - basic paint components, pigment volume content (PVC), pigments, biocides; 4. Effects of painted substrate on susceptibility; 5. Instrumental methods used in the analysis of paint film biodeterioration - vibrational spectroscopy, laser-induced breakdown spectroscopy, HPLC, image analysis, FTIR spectroscopy, GC-MS; 6. New technologies in the coatings industry - photocatalytic layers, cool paints, silver nanoparticles, silicon-containing paints.  相似文献   
6.
The aim of this paper is to investigate the structures and properties of epoxidized linseed and Pongamia glabra oils (LOE/POE), their derived products—epoxy-polyols (HLOE/HPOE), epoxy-polyurethanes (EU = LOPU/POPU) and EU coatings. Changes in epoxy equivalent, iodine value, hydroxyl value and percent saturation of oil backbone in due course of epoxidation and hydroxylation reactions, were plotted as a function of time. Spectral (IR, 1H NMR and 13C NMR), physico-chemical and thermal (TGA and DSC) analyses of aforementioned resins were performed by standard methods. Physico-mechanical and chemical resistance tests reveal that coatings of LOPUs perform better than those of POPUs. It was found that properties of oil epoxy-polyurethane coatings are mainly governed by: (i) fatty acid composition and nature of starting oils, (ii) extent of epoxidation, (iii) number and location of hydroxyls and residual double bonds in the final product and (iv) the presence of long dangling chains. PO, HLOE and LOPUs exhibit good antibacterial activity against Escherichia coli at very small MIC. These EU systems can be safely employed unto 220 °C.  相似文献   
7.
Amylose-ethylcellulose film coatings obtained from organic-based solvents were investigated as potential vehicles for colonic drug delivery. Amylose, in the form of an amylose-butan-1-ol dispersion, and ethylcellulose, dissolved in either ethyl lactate, ethanol, or propanol and plasticized with dibutyl sebacate, were mixed in various proportions and applied using a fluidized bed coater to achieve a range of film thicknesses on 5-aminosalicylic acid pellets. Drug release from the coated pellets was assessed under gastric and small intestinal conditions in the presence and absence of pepsin and pancreatin using dissolution methodology, and also within a simulated colonic environment involving fermentation testing with human feces in the form of a slurry. Under upper gastrointestinal tract conditions, the rate and extent of drug release were found to be related to the thickness of the coating and the ratio of amylose to ethylcellulose within the film. Modeling of the drug release data revealed that the ratio was more important than coat thickness in controlling drug release, irrespective of the solvent used for coating. Coatings with a thick film and/or low amylose content were relatively impermeable and able to delay drug release under conditions mimicking the upper gastrointestinal tract. Furthermore, drug release was unaffected by the presence of pepsin and pancreatin and by long-term storage. Under simulated colonic conditions, drug release was more pronounced from coating formulations containing higher proportions of amylose. Colon-specificity can therefore be achieved using such systems by judicious choice of the appropriate ratio of amylose to ethylcellulose and coat thickness.  相似文献   
8.
Following the ban in 2003 on the use of tributyl-tin compounds in antifouling coatings, the search for an environmentally-friendly alternative has accelerated. Biocidal TBT alternatives, such as diuron and Irgarol 1051®,1 have proved to be environmentally damaging to marine organisms. The issue regarding the use of biocides is that concerning the half-life of the compounds which allow a perpetuation of the toxic effects into the marine food chain, and initiate changes in the early stages of the organisms' life-cycle. In addition, the break-down of biocides can result in metabolites with greater toxicity and longevity than the parent compound.  相似文献   
9.
This study concentrates on the development of a new coating technology, which is applied via a solution crystallization process using heterogeneous seeds. Hemi‐sphere pastilles of different materials (seed particles) and isomaltulose solution are used as core materials and coating materials, respectively. The surface nucleation and the growth rate on the surface of seed particles are investigated. An effective crystalline coating, which is very compact in structure without cracking and uniform in shape, is achieved. The growth rate and the quality of coating are related to the degree of subcooling, the retention time and the surface characteristic of the used seed particles. This study focuses on how crystalline‐formed coatings are formed by a crystallization process, how an operating variable effects the quality of coatings and how a good quality of a coating can be achieved.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号