首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   4篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Huang L  Gan L  Zhao Q  Logan BE  Lu H  Chen G 《Bioresource technology》2011,102(19):8762-8768
Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided.  相似文献   
2.
Pyrene as high molecular weight polycyclic aromatic hydrocarbons (PAHs) is found in most terrestrial environment. However, the biodegradation of pyrene has been limited due to its bioavailability and toxicity. So it is vital to study degradation-capable microorganism and suitable co-substrate. In this study, the indigenous white-rot fungus Pseudotrametes gibbosa isolated from ChangBai Mountain located in northeast China was used to degrade pyrene, and 6 co-substrates were selected as co-metabolic carbon and energy sources. The results showed that P. gibbosa was able to utilize pyrene as sole carbon and energy source. The degradation efficiency achieved 28.33% within 18 days. Meanwhile, co-substrate wheat bran extract could stimulate laccase (Lac) production significantly by P. gibbosa, compared with other co-substrates and control (without co-substrate). In the presence of co-substrates, the biodegradation efficiency of pyrene ranged from 34.23% to 50.64% which was enhanced due to co-metabolism except for salicylic acid (25.91%) and phthalic acid (21.64%).  相似文献   
3.
Pyrene and fluoranthene, when supplied as the sole carbon source, were not degraded by Burkholderia sp. VUN10013. However, when added in a mixture with phenanthrene, both pyrene and fluoranthene were degraded in liquid broth and soil. The amounts of pyrene and fluoranthene in liquid media (initial concentrations of 50 mg l−1 each) decreased to 42.1% and 41.1%, respectively, after 21 days. The amounts of pyrene and fluoranthene in soil (initial concentrations of 75 mg kg−1 dry soil each) decreased to 25.8% and 12.1%, respectively, after 60 days. None of the high molecular weight (HMW) polycylic aromatic hydrocarbons (PAHs) tested adversely affected phenanthrene degradation by this bacterial strain and the amount of phenanthrene decreased rapidly within 3 and 15 days of incubation in liquid broth and soil, respectively. Anthracene also stimulated the degradation of pyrene or fluoranthene by Burkholderia sp. VUN10013, but to a lesser extent than phenanthrene. The extent of anthracene degradation decreased in the presence of these HMW PAHs.  相似文献   
4.
一株PCBs降解菌的降解特性及发酵条件优化   总被引:2,自引:1,他引:1  
【目的】针对一株多氯联苯的高效降解菌,考察其对多氯联苯(PCBs)的降解特性,并对降解条件进行优化。【方法】以不同浓度的2,4,4′-TCB与3,3′,4,4′-TCB为唯一碳源,研究苜蓿中华根瘤菌(Sinorhizobium melilon)对不同多氯联苯的降解转化能力,并进行发酵条件优化以及共代谢试验。【结果】接入菌株转化7 d后,随着底物浓度的增加,该菌对2,4,4′-TCB的降解能力呈下降趋势。在最低浓度1.0 mg/L时降解率最高,为93.3%;而在最高浓度50.0 mg/L时为65.1%。对于较难降解的四氯联苯3,3′,4,4′-TCB,菌株在最低浓度1.0 mg/L时降解率为56.2%,最高浓度25.0 mg/L时为22.8%。在温度30°C、pH 7.0、接种量4.5 mL、装液量25 mL时,获得菌株转化10.0 mg/L 2,4,4′-TCB的最优发酵条件,7 d的降解率由原来的54.8%提高到83.6%。柠檬烯、香芹酮及甘露醇作为共代谢底物也可较好地提高菌株降解效果。【结论】苜蓿中华根瘤菌对PCBs有很好的降解效果,研究结果对PCBs的微生物降解及环境中PCBs的生物修复具有较好的意义和应用价值。  相似文献   
5.
The cyclic nitramine explosive CL-20 (C6H6N12O12, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 -hexaazaisowurtzitane) is a relatively new energetic compound which could be a persistent organic pollutant. To follow its biodegradation dynamics, CL-20 was added to soil alone or together with organic co-substrates and N-source and incubated under oxic and anoxic conditions. Without co-substrates, the CL-20 degradation was detectable only under anoxic conditions. The highest degradation rate was found under aerobic conditions and with the addition of co-substrates, succinate and pyruvate being more efficient than acetate, glucose, starch or yeast extract. When added to intact soil, CL-20 degradation was not affected by the N content, but in soil serially diluted with N-free succinate-mineral medium, the process became N-limited. About 40% of randomly selected bacterial colonies grown on succinate agar medium were able to decompose CL-20. Based on 16S rDNA gene sequence and cell morphology, they were affiliated to Pseudomonas, Rhodococcus, Ochrobactrum, Mycobacterium and Ralstonia. In the pure culture of Pseudomonas sp. MS-P grown on the succinate-mineral N(+) medium, the degradation kinetics were first order with the same apparent kinetic constant throughout growth and decline phases of the batch culture. The observed kinetics agreed with the model that supposes co-metabolic transformation of CL-20 uncoupled from cell growth, which can be carried out by several constitutive cellular enzymes with wide substrate specificity. The GenBank accession numbers for the 16S rRNA gene sequences obtained on this study are AY773005–AY773010. Pseudomonas sp. MS-P (=B-41417) was deposited with Agriculture Research Service Culture Collection, USA.  相似文献   
6.
枯草芽孢杆菌基因修饰生产核黄素   总被引:1,自引:1,他引:0  
【目的】研究枯草芽孢杆菌核黄素合成途径、木糖代谢相关基因修饰对核黄素合成的影响。【方法】单独过表达或共同过表达核黄素操纵子中的基因、过表达木糖代谢相关基因构建相应的重组菌株。通过测定和比较重组菌株摇瓶发酵的核黄素产量和生物量,表征各个基因修饰的效应。采用摇瓶和5 L罐发酵,考察木糖作为主要碳源以及木糖与蔗糖共代谢对核黄素发酵的影响。【结果】ribA基因单独过表达,使核黄素产量提高99%,但生物量降低30%,出现细胞自溶现象。ribA-ribH基因共表达,使核黄素产量提高280%,并且无细胞自溶和生物量下降现象。1.5%蔗糖与6.5%木糖作为碳源,5 L发酵罐发酵70 h,核黄素产量达到3.6 g/L,与8%蔗糖为碳源的发酵相比,核黄素产量提高80%。木糖代谢相关基因过表达,均明显降低核黄素产量。【结论】与ribA基因单独过表达相比,ribA-ribH基因共表达可有效避免细胞自溶现象,并能进一步提高核黄素产量。蔗糖与木糖共代谢,能够改善前体物供给,有利于提高核黄素产量。  相似文献   
7.
We have earlier reported chemotaxis of a Gram-negative, motile Ralstonia sp. SJ98 towards p-nitrophenol (PNP), 4-nitrocatechol (NC), o-nitrobenzoate (ONB), p-nitrobenzoate (PNB), and 3-methyl-4-nitrophenol (MNP) that also served as sole source of carbon and energy to the strain [S.K. Samanta, B. Bhushan, A. Chauhan, R.K. Jain, Biochem. Biophy. Res. Commun. 269 (2000) 117; B. Bhushan, S.K. Samanta, A. Chauhan, A.K. Chakraborti, R.K. Jain, Biochem. Biophy. Res. Commun. 275 (2000) 129]. In this paper, we report chemotaxis of a Ralstonia sp. SJ98 toward seven different nitroaromatic compounds (NACs) by drop assay, swarm plate assay, and capillary assay. These NACs do not serve as sole carbon and energy source to strain SJ98 but are partially transformed in the presence of an alternate carbon source such as succinate. This is the first report showing chemotaxis of a bacterial strain toward co-metabolizable NACs.  相似文献   
8.
Natural ability to ferment the major sugars (glucose and xylose) of plant biomass is an advantageous feature of Escherichia coli in biofuel production. However, excess glucose completely inhibits xylose utilization in E. coli and decreases yield and productivity of fermentation due to sequential utilization of xylose after glucose. As an approach to overcome this drawback, E. coli MG1655 was engineered for simultaneous glucose (in the form of cellobiose) and xylose utilization by a combination of genetic and evolutionary engineering strategies. The recombinant E. coli was capable of utilizing approximately 6 g/L of cellobiose and 2 g/L of xylose in approximately 36 h, whereas wild-type E. coli was unable to utilize xylose completely in the presence of 6 g/L of glucose even after 75 hours. The engineered strain also co-utilized cellobiose with mannose or galactose; however, it was unable to metabolize cellobiose in the presence of arabinose and glucose. Successful cellobiose and xylose co-fermentation is a vital step for simultaneous saccharification and co-fermentation process and a promising step towards consolidated bioprocessing.  相似文献   
9.
Aeromonas sp.D-4不能以LAS作为唯一碳源,它对LAS的利用是通过共代谢来完成的。LAS对D-4具有毒害作用,而且,起始LAS浓度越高,毒害作用越大。LAS的最大去除串与起始LAS浓度呈负相关。当起始LAS在40-120mg/L之间时,去除串较高;如果起始LAS在40mg/L左右,则去除率可达s096以上。研究还表明,Aeromonas sp.D-4纯培养对LAS的去除率(最大值84.97%)大于混合菌(最大值78.57%)。耗氧呼吸测定证实了Aeromonas sp.D-4对于LAS的共代谢和LAS对细菌的毒性,同时也证实了培养基中LAS的消失是细菌作用的结果。  相似文献   
10.
植物内生菌研究及其科学意义   总被引:15,自引:1,他引:14  
植物内生菌是近三十年来在国内外迅速受到关注的微生物类群,研究的角度不同,概念也比较混乱。本文就植物内生菌研究及其科学意义进行了综述和讨论。植物内生菌在国外广受关注,始于禾本科植物内生真菌以及林木内生真菌的特殊作用。产紫杉醇的红豆杉内生真菌被报道后,植物内生菌研究在生理活性物质领域开始暴发式的增加。通过对一年生草本植物、多年生草本植物、木本植物和藤本植物各部位的内生微生物的比较和分析,总结了植物内生菌的一些共性和特殊性,指出了植物内生菌研究的一些发展趋势。本文探讨植物内生菌对地球上的微生物物种总量的贡献。提出"植物体在自然界的实际生存状态实际上是微生物和植物的状态"的观点,导出植物育种实际上是"植物和微生物的共生体的培育"的观点。还讨论了植物内生菌对生态学、生物学、微生物的进化和物种形成、内生菌/宿主的联合代谢、以及植物保护学、畜牧兽医学、林学等领域的意义和影响。本文认为,植物内生菌研究打开了微生物资源的一个新局面,将在多个领域中产生更广泛的影响。植物内生菌研究的真正意义不仅在于其生态独特性,更在于微生物在宿主体内和宿主植物的协同作用及协同作用所产生的新功能和新物质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号