首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2009年   2篇
  1996年   1篇
  1991年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The ability of two big brown bats (Eptesicus fuscus) to discriminate the distance to an electronically synthesized phantom target by echolocation was tested in the presence of interfering signals presented slightly before the target echo. Interfering signals were chosen to have differing degrees of similarity to the typical echolocation emission used by the bat in this task (which was the signal used to create the phantom target), and we predicted that the degree of disruption of ranging would be proportional to the similarity of the interference to the target echo. This prediction was not confirmed; rather, all interference signals not identical to the target echo increased the threshold to about twice that found with no interference. When the interference was identical to the target echo, the threshold increased to about 4 times that with no interference. When each bat was presented with phantom target echoes appropriate for the other bat, its range discrimination threshold increased about ten fold, and in this case the degree of interference of different signals was related to their similarity to the target echo, not to their similarity to the bat's normal signal. We suggest that Eptesicus may suppress interference by a more sophisticated strategy than simple linear matched filtering.Abbreviations E exemplar signal - M f foreign model signal - M r reversed self-model signal - M s self-model signal - N noise signal - SPL sound pressure level  相似文献   
2.
Big brown bats (Eptesicus fuscus) use biosonar to find insect prey in open areas, but they also find prey near vegetation and even fly through vegetation when in transit from roosts to feeding sites. To evaluate their reactions to dense, distributed clutter, bats were tested in an obstacle array consisting of rows of vertically hanging chains. Chains were removed from the array to create a curved corridor of three clutter densities (high, medium, low). Bats flew along this path to receive a food reward after landing on the far wall. Interpulse intervals (IPIs) varied across clutter densities to reflect different compromises between using short IPIs for gathering echoes rapidly enough to maneuver past the nearest chains and using longer IPIs so that all echoes from one sound can be received before the next sound is emitted. In high-clutter density, IPIs were uniformly shorter (20–65 ms) than in medium and low densities (40–100 ms) and arranged in “strobe groups,” with some overlap of echo streams from different broadcasts, causing pulse-echo ambiguity. As previously proposed, alternating short and long IPIs in strobe groups may allow bats to focus on large-scale pathfinding tasks as well as close-in obstacle avoidance.  相似文献   
3.
Masking affects the ability of echolocating bats to detect a target in the presence of clutter targets. It can be reduced by spatially separating the targets. Spatial unmasking was measured in a two-alternative-forced-choice detection experiment with four Big Brown Bats detecting a wire at 1 m distance. Depth dependent spatial unmasking was investigated by the bats detecting a wire with a diameter of 1.2 mm in front of a masker with a threshold distance of 11 cm behind the wire. For angle dependent spatial unmasking the masker was turned laterally, starting from its threshold position at 11 cm. With increasing masker angles the bats could detect thinner wires with diameters decreasing from 1.2 mm (target strength −36.8 dB) at 0° to 0.2 mm (target strength −63.0 dB) at 22°. Without masker, the bats detected wire diameters of 0.16 mm (target strength −66.2 dB), reached with masker positions beyond 23° (complete masking release). Analysis of the sonar signals indicated strategies in the echolocation behavior. The bats enhanced the second harmonics of their signals. This may improve the spatial separation between wire and masker due to frequency-dependent directionality increase of sound emission and echo reception.  相似文献   
4.
Summary Doppler shift compensation behaviour in horseshoe bats, Rhinolophus rouxi, was used to test the interference of pure tones and narrow band noise with compensation performance. The distortions in Doppler shift compensation to sinusoidally frequency shifted echoes (modulation frequency: 0.1 Hz, maximum frequency shift: 3 kHz) consisted of a reduced compensation amplitude and/or a shift of the emitted frequency to lower frequencies (Fig. 1).Pure tones at frequencies between 200 and 900 Hz above the bat's resting frequency (RF) disturbed the Doppler shift compensation, with a maximum of intererence between 400 and 550 Hz (Fig. 2). Minimum duration of pure tones for interference was 20 ms and durations above 40 ms were most effective (Fig. 3). Interfering pure tones arriving later than about 10 ms after the onset of the echolocation call showed markedly reduced interference (Fig. 4). Doppler shift compensation was affected by pure tones at the optimum interfering frequency with sound pressure levels down to –48 dB rel the intensity level of the emitted call (Figs. 5, 6).Narrow bandwidth noise (bandwidth from ± 100 Hz to ± 800 Hz) disturbed Doppler shift compensation at carrier frequencies between –250 Hz below and 800 Hz above RF with a maximum of interference between 250 and 500 Hz above resting frequency (Fig. 7). The duration and delay of the noise had similar influences on interference with Doppler shift compensation as did pure tones (Figs. 8, 9). Intensity dependence for noise interference was more variable than for pure tones (-32 dB to -45 dB rel emitted sound pressure level, Fig. 10).The temporal and spectral gating in Doppler shift compensation behaviour is discussed as an effective mechanism for clutter rejection by improving the processing of frequency and amplitude transients in the echoes of horseshoe bats.Abbreviations CF constant frequency - FM frequency modulation - RF resting frequency - SPL sound pressure level  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号