首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   46篇
  国内免费   22篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   15篇
  2015年   11篇
  2014年   21篇
  2013年   11篇
  2012年   10篇
  2011年   24篇
  2010年   18篇
  2009年   42篇
  2008年   39篇
  2007年   39篇
  2006年   36篇
  2005年   18篇
  2004年   24篇
  2003年   17篇
  2002年   26篇
  2001年   14篇
  2000年   20篇
  1999年   29篇
  1998年   25篇
  1997年   25篇
  1996年   21篇
  1995年   13篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   6篇
  1988年   8篇
  1987年   7篇
  1986年   1篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有606条查询结果,搜索用时 31 毫秒
1.
Summary We report on the size distribution of clones marked by mitotic recombination induced by several different doses of X-rays applied to 72 h oldDrosophila larvae. The results indicate that the radiation significantly reduces the number of cells which undergo normal proliferation in the imaginal wing disc. We estimate that 1000 r reduces by 40–60% the number of cells capable of making a normal contribution to the development of the adult wing. Part of this reduction is due to severe curtailment in the proliferative ability of cells which nevertheless remain capable of adult differentiation; this effect is possibly due to radiation-induced aneuploidy. Cytological evidence suggests that immediate cell death also occurs as a result of radiation doses as low as 100 r. The surviving cells are stimulated to undergo additional proliferation in response to the X-ray damage so that the result is the differentiation of a normal wing.  相似文献   
2.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
3.
R. Karban 《Oecologia》1987,74(2):298-303
Summary The effects of clonal variation, interspecific competition, and climate upon the population size of Apterothrips secticornis was assessed by a series of observations and experimental manipulations. Three clones of the host plant, Erigeron glaucus, consistently supported different numbers of thrips during monthly censuses. When rosettes of the three clones were transplanted to a common garden, relative numbers of thrips on the clones remained the same as those observed where the clones grew in situ. The presence or absence of other hervivores had no effect on thrips numbers in the common garden. Plume moth caterpillars and thrips were observed to co-occur less often than expected in the field but this was caused by differences in habitat selection by these two species rather than being the result of interspecific competition. Populations of thrips were affected by climate, but analyses suggest that the host clone was a more important factor.  相似文献   
4.
Summary Nauclea diderrichii (De Wild, and Th. Dur.) Merill (Rubiaceae), an indigenous hardwood of West Africa, is increasingly being grown commercially. This study investigates the potential for vegetative propagation and clonal selection, and raises some fundamental questions about the physiology of apical dominance and of plagiotropism. Rooting ability was high, with up to 100% rooting in 2–4 weeks, when different Indole-3-butyric acid (IBA) concentrations and leaf areas were tested. Auxin applications greatly increased the numbers of roots per cutting. The decapitation of unbranched plants revealed clonal variation in apical dominance and also in the establishment of outright dominance by the two shoots formed from the outgrowth of the axillary buds of the opposite leaves at the top node. Regression analysis of the Dominance Ratio (length of dominant: length of the sub-dominant shoot at the time of achieving dominance) against overall lateral bud activity (r = 0.82), showed that when the two top shoots co-dominate they provide a more powerful source of Correlative Inhibition than when one of the top shoots dominates the other. The imposition of plagiotropism in the axillary bud occurred over a period of a few days as the terminal and axillary buds emerged from the stipule. Growth of accessory buds on intact plants and debranched cuttings was orthotropic. These results are discussed with regard to the role of the leaf in root formation and the understanding of dominance relationships, branching and crown development in trees.  相似文献   
5.
Summary Effects of variation in fire season on flowering of forbs and shrubs were studied experimentally in two longleaf pine forest habitats in northern Florida, USA. Large, replicated plots were burned at different times of the year, and flowering on each plot was measured over the twelve months following fire. While fire season had little effect on the number of species flowering during the year following fire, fires during the growing season decreased average flowering duration per species and increased synchronization of peak flowering times within species relative to fires between growing seasons. Fires during the growing season also increased the dominance of fall flowering forbs and delayed peak fall flowering. Differences in flowering resulting from variation in fire season were related to seasonal changes in the morphology of clonal forbs, especially fall-flowering composites. Community level differences in flowering phenologies indicated that timing of fire relative to environmental cues that induced flowering was important in determining flowering synchrony among species within the ground cover of longleaf pine forests. Differences in fire season produced qualitatively similar effects on flowering phenologies in both habitats, indicating plant responses to variation in the timing of fires were not habitat specific.  相似文献   
6.
Summary Lathyrus sylvestris is a pioneer legume often found in disturbed habitats. Mainly reproduced through vegetative propagation, this clonal species presents a system of ramets that remain connected for several years. The existence of carbon transfer among ramets within a clone has been studied using 14C in situ. Assimilate translocation from primary to secondary ramets was observed in all clones when the primary ramet was exposed to 14CO2. The amount of transfer ranged from trace up to 90% of the total 14C incorporated. However, in only half of the clones there was consistent enrichment of the secondary ramet (5 to 89%) suggesting that interramets transfer of carbon may be facultative. Furthermore, when significant export occurred from the primary ramet, it was always principally towards only one ramet even when the clone included more than one. The transfer of 14C from secondary to primary ramets was shown to be significant only when photosynthesis of the latter was decreased by shading. In this case import of carbon was never more than 60% of the incorporated 14C.No correlation was found between age or size of the ramets and the intensity of transfer. The shading effect let suppose that transfers are mainly driven by carbon limitation due to changing environmental conditions and not to the state of ramet maturity. The adaptative advantage of such facultative physiological integration between ramets of a clone is discussed.  相似文献   
7.
Summary As clonal plants grow they move through space. The movement patterns that result can be complex and difficult to interpret without the aid of models. We developed a stochastic simulation model of clonal growth in the tall goldenrod, Solidago altissima. Our model was calibrated with field data on the clonal expansion of both seedlings and established clones, and model assumptions were verified by statistical analyses.When simulations were based on empirical distributions with long rhizome lengths, there was greater dispersal, less leaf overlap, and less spatial aggregation than when simulations were based on distributions with comparatively short rhizome lengths. For the field data that we utilized, variation in rhizome lengths had a greater effect than variation for either branching angles or rhizome initiation points (see text). We also found that observed patterns of clonal growth in S. altissima did not cause the formation of fairy rings. However, simulations with an artificial distribution of branching angles demonstrate that fairy rings can result solely from a plant's clonal morphology.Stochastic simulation models that incorporated variation in rhizome lengths, branching angles, and rhizome initiation points produced greater dispersal and less leaf overlap than deterministic models. Thus, variation for clonal growth parameters may increase the efficiency of substrate exploration by increasing the area covered and by decreasing the potential for intraclonal competition. We also demonstrated that ramet displacements were slightly, but consistently lower in stochastic simulation models than in random-walk models. This difference was due to the incorporation of details on rhizome bud initiation into stochastic simulation models, but not random-walk models. We discuss the advantages and disadvantages of deterministic, stochastic simulation, and random-walk models of clonal growth.  相似文献   
8.
An increasing world population and rise in demand for tree products, especially wood, has increased the need to produce more timber through planting more forest with improved quality stock. Superior trees are likely to arise from several sources. Firstly, forest trees can be selected from wild populations and cloned using macropropagation techniques already being investigated for fruit tree rootstocks. Alternatively, propagation might be brought aboutin vitro through micropropagation or sustained somatic embryogenesis, with encapsulation of the somatic embryos to form artificial seeds. Tree quality could be improved through increased plant breeding and it is likely that experienced gained, to date, in the breeding of fruit species will be useful in devising strategies for forest trees. Since the development of techniques to regenerate woody plants from explant tissues, cells and protoplasts, it is now feasible to test the use of tissue culture methods to bring about improvements in tree quality. Success has already been achieved for tree species in the generation of somaclonal and protoclonal variation, the formation of haploids, triploids and polyploids, somatic hybrids and cybrids and the introduction of foreign DNA through transformation. This review summarizes the advances made so far in tree biotechnology, and suggests some of the directions that it might take in the future.  相似文献   
9.
R. S. Poethig  I. M. Sussex 《Planta》1985,165(2):170-184
The cellular parameters of leaf development in tobacco (Nicotiana tabacum L.) have been characterized using clonal analysis, an approach that provides unequivocal evidence of cell lineage. Our results indicate that the tobacco leaf arises from a group of around 100 cells in the shoot apical meristem. Each of these cells contributes to a unique longitudinal section of the axis and transverse section of the lamina. This pattern of cell lincage indicates that primordial cells contribute more or less equally to the growth of the axis, in contrast to the more traditional view of leaf development in which the leaf is pictured as arising from a group of apical initials. Clones induced prior to the initiation of the lamina demonstrate that the subepidermal layer of the lamina arises from at least six files of cells. Submarginal cells usually divide with their spindles parallel to the margin, and therefore contribute relatively little to the transverse expansion of the lamina. During the expansion of the lamina the orientation and frequency of cell division are highly regulated, as is the duration of meristematic growth. Initially, cell division is polarized so as to produce lineages that are at an oblique angle to the midrib; later cell division is in alternating perpendicular planes. The distribution of clones generated by irradiation at various stages of development indicates that cell division ceases at the tip of the leaf when the leaf is about one tenth its final size, and then ceases in progressively more basal regions of the lamina. Variation in the mutation frequency within the lamina reflects variation in the frequency of mitosis. Prior to the mergence of the leaf the frequency of mutation is maximal near the tip of the leaf and extremely low at its base; after emergence, the frequency of mutation increases at the base of the leaf. In any given region of the lamina the frequency of mutation is highest in interveinal regions, and is relatively low near the margin. Thus, both the orientation and frequency of cell division at the leaf margin indicate that this region plays a minor role in the growth of the lamina.Abbreviation MF mutation frequency  相似文献   
10.
Vitex rotundifolia L.f. is a woody perennial and has sexual and asexual modes of reproduction. Allozyme study was conducted on 550 plants in 13 Korean populations. The levels of genetic variability and divergence within and among populations, respectively, are considerably lower and higher than the mean values for woody plants with similar life history tralts. Mean percentage of polymorphic loci (P P), mean number of alleles per locus (A P), and mean genetic diversity (He P) within populations ofV. rotundifolia were: 16.7%, 1.21, and 0.047. On average, about 79% of the total variation inV. rotundifolia was common to all populations (meanG ST=0.208). In addition, significant differences in allele frequencies among populations were found in all polymorphic loci examined (P<0.001). On the other hand, levels of genotypic diversity within and among populations were moderate. About 44% (18/41) of multilocus genotypes were “local genotypes” (genotypes occurring in only one population), whereas only one “widespread genotype” (genotypes occurring in more than 75% of the populations) were detected. The mean number of multilocus genotypes per population (G) and mean genotypic diversity index (D G) were 8.4 and 0.74, respectively. Most common multilocus genotypes found in populations were homozygous for five polymorphic loci. The abundance of ramets of these genets is responsible for the low levels of expected heterozygosity within populations. The results indicate that clonal reproduction may act as an enhancer of genetic drift by reducing effective size of local populations ofV. rotundifolia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号