首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  2019年   4篇
  2017年   6篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1990年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
This study confirms the presence of the toxigenic benthic dinoflagellates Gambierdiscus belizeanus and Ostreopsis spp. in the central Red Sea. To our knowledge, this is also the first report of these taxa in coastal waters of Saudi Arabia, indicating the potential occurrence of ciguatera fish poisoning (CFP) in that region. During field investigations carried out in 2012 and 2013, a total of 100 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast and examined for the presence of Gambierdiscus and Ostreopsis, two toxigenic dinoflagellate genera commonly observed in coral reef communities around the world. Both Gambierdiscus and Ostreopsis spp. were observed at low densities (<200 cells g−1 wet weight algae). Cell densities of Ostreopsis spp. were significantly higher than Gambierdiscus spp. at most of the sampling sites, and abundances of both genera were negatively correlated with seawater salinity. To assess the potential for ciguatoxicity in this region, several Gambierdiscus isolates were established in culture and examined for species identity and toxicity. All isolates were morphologically and molecularly identified as Gambierdiscus belizeanus. Toxicity analysis of two isolates using the mouse neuroblastoma cell-based assay for ciguatoxins (CTX) confirmed G. belizeanus as a CTX producer, with a maximum toxin content of 6.50 ± 1.14 × 10−5 pg P-CTX-1 eq. cell−1. Compared to Gambierdiscus isolates from other locations, these were low toxicity strains. The low Gambierdiscus densities observed along with their comparatively low toxin contents may explain why CFP is unidentified and unreported in this region. Nevertheless, the presence of these potentially toxigenic dinoflagellate species at multiple sites in the central Red Sea warrants future study on their possible effects on marine food webs and human health in this region.  相似文献   
2.
Twenty-four specimen of macroalgae were collected in nearshore waters of the island of Hawaii, identified, and maintained to examine how the epiphytic relationship between Gambierdiscus toxicus (isolate BIG12) varied among the macroalgal species. Gambierdiscus cells were introduced to Petri dishes containing 100 g samples of each macroalgal host, which were examined at two, 16, 24, and every 24–72 h thereafter, over a 29-day period. Gambierdiscus proliferated in the presence of some host species (e.g., Galaxaura marginata and Jania sp.), but grew little in the presence of other species (e.g., Portieria hornemannii). Gambierdiscus exhibited high survival rates (>99%) in the presence of Chaetomorpha sp., but died before the end of the experiment (after 21 days) with other host species (e.g., Dictyota and Microdictyon spp.). Gambierdiscus avoided contact with P. hornemannii, but averaged up to 30% attachment with other host species. The numbers of Gambierdiscus cells belonging to one of three classes (alive and attached; alive and unattached; and dead) were determined for each time point. The 24 algal hosts were grouped according to their commonalities relative to these three classes using a Bray-Curtis similarity index, similarity profile (SIMPROF) permutation tests, and Multi-Dimensional Scaling (MDS) analysis (PRIMER 6). The resultant six groupings were used to construct different Gambierdiscus growth profiles for the different algal hosts. Group A is characterized by a preponderance of unattached cells and high mortality rates. Groups B, C, E, and F also displayed high proportions of unattached cells, but mortality either occurred later (Groups B and C) or rates were lower (Groups E and F). Group D had the highest proportion of attached cells. Group E contained three out of the four chlorophyte species, while Group F contained the majority of the rhodophytes. Over 50% of the species in Group F are considered to be palatable, whereas Groups A, B, and C are composed of species that exhibit chemical defenses against herbivory. The results of this study coupled with previous findings indicate that Gambierdiscus is not an obligate epiphyte; it can be free-swimming and found in the plankton. The conditions that lead to changes between epiphytic and planktonic stages need to be better studied in order to determine how they affect Gambierdiscus growth and physiology, connectivity and dispersion mechanisms, and toxin movement up into the foodweb.  相似文献   
3.
4.
The Gambierdiscus genus is a group of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit rDNA that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.  相似文献   
5.
This study compared two collection methods for Gambierdiscus and other benthic harmful algal bloom (BHAB) dinoflagellates, an artificial substrate method and the traditional macrophyte substrate method. Specifically, we report the results of a series of field experiments in tropical environments designed to address the correlation of benthic dinoflagellate abundance on artificial substrate and those on adjacent macrophytes. The data indicated abundance of BHAB dinoflagellates associated with new, artificial substrate was directly related to the overall abundance of BHAB cells on macrophytes in the surrounding environment. There was no difference in sample variability among the natural and artificial substrates. BHAB dinoflagellate abundance on artificial substrates reached equilibrium with the surrounding population within 24 h. Calculating cell abundance normalized to surface area of artificial substrate, rather than to the wet weight of macrophytes, eliminates complications related to the mass of different macrophyte species, problems of macrophyte preference by BHAB dinoflagellates and allows data to be compared across studies. The protocols outlined in this study are the first steps to a standardized sampling method for BHAB dinoflagellates that can support a cell-based monitoring program for ciguatera fish poisoning. While this study is primarily concerned with the ciguatera-associated genus Gambierdiscus, we also include data on the abundance of benthic Prorocentrum and Ostreopsis cells.  相似文献   
6.
A single cell of the dinoflagellate genus Fukuyoa was isolated from the island of Formentera (Balearic Islands, west Mediterranean Sea), cultured, and characterized by morphological and molecular methods and toxin analyses. This is the first report of the Gambierdiscus lineage (genera Fukuyoa and Gambierdiscus) from the western Mediterranean Sea, which is cooler than its eastern basin. Molecular analyses revealed that the Mediterranean strain belongs to F. paulensis and that it bears LSU rDNA sequences identical to New Zealand, Australian, and Brazilian strains. It also shared an identical sequence of the more variable ITS‐rDNA with the Brazilian strain. Toxin analyses showed the presence of maitotoxin, 54‐deoxyCTX1B, and gambieric acid A. This is the first observation of the two latter compounds in a Fukuyoa strain. Therefore, both Gambierdiscus and Fukuyoa should be considered when as contributing to ciguatera fish poisoning. Different strains of Fukuyoa form a complex of morphologically cryptic lineages where F. paulensis stands as the most distantly related nominal species. The comparison of the ITS2 secondary structures revealed the absence of CBCs among strains. The study of the morphological and molecular traits depicted an unresolved taxonomic scenario impacted by the low strains sampling.  相似文献   
7.
In culture, Gambierdiscus spp. have been shown to prefer irradiances that are relatively low (≤250 μmol photons m−2 s−1) versus those to which they are frequently exposed to in their natural environment (>500 μmol photons m−2 s−1). Although several behavioral strategies for coping with such irradiances have been suggested, it is unclear as to how these dinoflagellates do so on a physiological level. More specifically, how do long term exposures (30 days) affect cell size and cellular chlorophyll content, and what is the photosynthetic response to short term, high irradiance exposures (up to 1464 μmol photons m−2 s−1)? The results of this study reveal that cell size and chlorophyll content exhibited by G. carolinianus increased with acclimation to increasing photon flux density. Additionally, both G. carolinianus and G. silvae exhibited reduced photosynthetic efficiency when acclimated to increased photon flux density. Photosynthetic yield exhibited by G. silvae was greater than that for G. carolinianus across all acclimation irradiances. Although such differences were evident, both G. carolinianus and G. silvae appear to have adequate biochemical mechanisms to withstand exposure to irradiances exceeding 250 μmol photons m−2 s−1 for at least short periods of time following acclimation to irradiances of up to 150 μmol photons m−2 s−1.  相似文献   
8.
Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28 days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34 °C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28 °C compared to strain NQAIF116, which had highest growth at 24 °C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher frequency of reported ciguatera illness in populated temperate Australian regions, outside the tropical range of the GBR. Therefore, the findings on salinity and temperature tolerance of two strains of G. carpenteri indicates potential adaptability to different local environmental conditions. These are baseline data for future investigations into the potential southward range expansion of ciguatera-causing dinoflagellates originating from the GBR.  相似文献   
9.
Dinoflagellates belonging to the genus Gambierdiscus are the causative agent of ciguatera fish poisoning (CFP). This syndrome, which is widespread in tropical and subtropical regions, has recently been reported also in temperate latitudes. Taxonomic studies of Gambierdiscus have yet to completely couple the morphological features of member species with their genetics. In this study, the cellular and nuclear morphology of a single strain of one species of Gambierdiscus was determined in cells grown under different culture conditions. The results showed a wide-ranging variability of cell sizes, together with a clear relationship between cell size and nuclear morphology. Thus, small cells were associated with round to oval or slightly U-shaped nuclei and large cells with obviously U-shaped nuclei. Most cells exhibited the typical anterio-posteriorly compressed lenticular, shape of Gambierdiscus, with the exception of a few small globular-shaped specimens. In all cells, regardless of their size, the arrangement of the thecal plates was typical of lenticular Gambierdiscus. Dividing cells were consistently the largest. In these cells, nuclear morphology, karyokinesis, and cytokinesis were characterized. Cells underwent division only during the dark period, thus demonstrating their spontaneous synchronized division. Cellular forms related to the sexual cycle were also present in the cultures and included gamete pairs and putative meiotic planozygotes. The effect of the culture medium was studied by means of principal component analyses, which showed a positive correlation between the medium used and nuclear size and shape but not cell size.  相似文献   
10.
Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation. Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract bioactives, require attention to biosafety considerations as outlined in this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号