首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
排序方式: 共有34条查询结果,搜索用时 171 毫秒
1.
Because of low contents in the native organs and failure of the expression in cultured cells, the chromophore configurations of the pigments in Go-coupled opsin and peropsin groups in the opsin family are unknown. Here we have succeeded in expression of the amphioxus homologs of these groups in HEK293s cells and found that they can be regenerated with 11-cis- and all-trans-retinals, respectively. Light isomerized the chromophores of these opsins into the all-trans and 11-cis forms, respectively. The results strongly suggest that the physiological function of peropsin would be a retinal photoisomerase, while 11-cis configuration is necessary for the Go-coupled opsin groups.  相似文献   
2.
By co-expression of heme oxygenase and various bilin reductase(s) in a single operon in conjunction with apophytochrome using two compatible plasmids, we developed a system to produce phytochromes with various chromophores in Escherichia coli. Through the selection of different bilin reductases, apophytochromes were assembled with phytochromobilin, phycocyanobilin, and phycoerythrobilin. The blue-shifted difference spectra of truncated phytochromes were observed with a phycocyanobilin chromophore compared to a phytochromobilin chromophore. When the phycoerythrobilin biosynthetic enzymes were co-expressed, E. coli cells accumulated orange-fluorescent phytochrome. The metabolic engineering of bacteria for the production of various bilins for assembly into phytochromes will facilitate the molecular analysis of photoreceptors.  相似文献   
3.
Green fluorescent protein (GFP) has a chromophore that forms autocatalytically within the folded protein. Although many studies have focused on the precise mechanism of chromophore maturation, little is known about the kinetics of de novo chromophore maturation. Here we present a simple and efficient method for examining the de novo kinetics. GFP with an immature chromophore was synthesized in a reconstituted cell-free protein synthesis system under anaerobic conditions. Chromophore maturation was initiated by rapid dilution in an air-saturated maturation buffer, and the time course of fluorescence development was monitored. Comparison of the de novo maturation rates in various GFP variants revealed that some folding mutations near the chromophore promoted rapid chromophore maturation and that the accumulation of mutations could reduce the maturation rate. Our method will contribute to the design of rapidly maturing fluorescent proteins with improved characteristics for real-time monitoring of cellular events.  相似文献   
4.
Phytochromes are photoreceptors using a bilin tetrapyrrole as chromophore, which switch in canonical phytochromes between red (Pr) and far red (Pfr) light-absorbing states. Cph2 from Synechocystis sp., a noncanonical phytochrome, harbors besides a cyanobacteriochrome domain a second photosensory module, a Pr/Pfr-interconverting GAF-GAF bidomain (SynCph2(1-2)). As in the canonical phytochromes, a unique motif of the second GAF domain, the tongue region, seals the bilin-binding site in the GAF1 domain from solvent access. Time-resolved spectroscopy of the SynCph2(1-2) module shows four intermediates during Pr → Pfr phototransformation and three intermediates during Pfr → Pr back-conversion. A mutation in the tongue''s conserved PRXSF motif, S385A, affects the formation of late intermediate R3 and of a Pfr-like state but not the back-conversion to Pr via a lumi-F-like state. In contrast, a mutation in the likewise conserved WXE motif, W389A, changes the photocycle at intermediate R2 and causes an alternative red light-adapted state. Here, back-conversion to Pr proceeds via intermediates differing from SynCph2(1-2). Replacement of this tryptophan that is ∼15 Å distant from the chromophore by another aromatic amino acid, W389F, restores native Pr → Pfr phototransformation. These results indicate large scale conformational changes within the tongue region of GAF2 during the final processes of phototransformation. We propose that in early intermediates only the chromophore and its nearest surroundings are altered, whereas late changes during R2 formation depend on the distant WXE motifs of the tongue region. Ser-385 within the PRXSF motif affects only late intermediate R3, when refolding of the tongue and docking to the GAF1 domain are almost completed.  相似文献   
5.
The scleractinian finger coral Porites compressa has been documented to develop raised growth anomalies of unknown origin, commonly referred to as “tumors”. These skeletal tissue anomalies (STAs) are circumscribed nodule-like areas of enlarged skeleton and tissue with fewer polyps and zooxanthellae than adjacent tissue. A field survey of the STA prevalence in Oahu, Kaneohe Bay, Hawaii, was complemented by laboratory analysis to reveal biochemical, histological and skeletal differences between anomalous and reference tissue. MutY, Hsp90a1, GRP75 and metallothionein, proteins known to be up-regulated in hyperplastic tissues, were over expressed in the STAs compared to adjacent normal-appearing and reference tissues. Histological analysis was further accompanied by elemental and micro-structural analyses of skeleton. Anomalous skeleton was of similar aragonite composition to adjacent skeleton but more porous as evidenced by an increased rate of vertical extension without thickening. Polyp structure was retained throughout the lesion, but abnormal polyps were hypertrophied, with increased mass of aboral tissue lining the skeleton, and thickened areas of skeletogenic calicoblastic epithelium along the basal floor. The latter were highly metabolically active and infiltrated with chromophore cells. These observations qualify the STAs as hyperplasia and are the first report in poritid corals of chromophore infiltration processes in active calicoblastic epithelium areas.  相似文献   
6.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   
7.
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (max: 357–382 nm), blue (max: 431–446 nm), green (max: 490–553 nm) and red (max: 548–607 nm) parts of the spectrum, and a rod visual pigment with max: 504–531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment max than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment max during smoltification.  相似文献   
8.
Spontaneous chromophore biosynthesis in green fluorescent protein (GFP) is initiated by a main-chain cyclization reaction catalyzed by the protein fold. To investigate the structural prerequisites for chromophore formation, we have substituted the conserved residues Arg96, Glu222, and Gly67. Upon purification, the variants can be ordered based on their decreasing extent of chromophore maturation according to the series EGFP, E222Q, R96K, G67A, and R96M. Arg96 and Glu222 appear to play catalytic roles, whereas Gly67 is likely important in interior packing to enforce correct hydrogen bonding to Arg96. The effect of Arg96 can be partially compensated for by a lysine, but not by a methionine residue, confirming its electrophilic role. Limited trypsinolysis data suggest that protein stability is largely unaffected by the presence of the chromophore, inconsistent with the mechanical compression hypothesis. Trends in optical properties may be related to the degree of chromophore charge delocalization, which is modulated by residue 96.  相似文献   
9.
Pholasin is a photoprotein derived from the glowing bivalve mollusk, Pholas dactylus. Even though the chemical structure of the prosthetic group (chromophore) responsible for the light emission character of the mollusk remains unknown, research has shown that the presence of dehydrocoelenterazine (DCL) increased light emission and that the dithiothreitol adduct of DCL was isolated from Pholasin®. To date, our research has been focused on activating apopholasin, the naturally occurring apoprotein of Pholasin®, using DCL. In the current study, the expression of recombinant apopholasin via a baculovirus–silkworm multigene expression system is reported. Additionally, the purification of apopholasin using a Flag®-affinity column, the activation of apopholasin using DCL, and the initiation of its luminescent character through the addition of a peroxidase–hydrogen peroxide mixture are reported. The peroxidase–H2O2-dependent luminescence was observed from the recombinant apopholasin activated with DCL.  相似文献   
10.
The genome of Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) contains two open reading frames, Cc-phr1 and Cc-phr2, which encode putative class II CPD-DNA photolyases. CPD-photolyases repair UV-induced pyrimidine cyclobutane dimers using visible light as an energy source. Expression of Cc-phr2 provided photolyase deficient Escherichia coli cells with photoreactivating activity indicating that Cc-phr2 encodes an active photolyase. In contrast, Cc-phr1 did not rescue the photolyase deficiency. Cc-phr2 was overexpressed in E. coli and the resulting photolyase was purified till apparent homogeneity. Spectral measurements indicated the presence of FAD, but a second chromophore appeared to be absent. Recombinant Cc-phr2 photolyase was found to bind specifically F0 (8-hydroxy-7,8-didemethyl-5-deazariboflavin), which is an antenna chromophore present in various photolyases.. After reconstitution, FAD and F0 were present in approximately equimolar amounts. In reconstituted photolyase the F0 chromophore is functionally active as judged from the increase in the in vitro repair activity. This study demonstrates for the first time that a functional photolyase is encoded by an insect virus, which may have implications for the design of a new generation of baculoviruses with improved performance in insect pest control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号