首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2023年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 343 毫秒
1.
Eukaryotic membrane proteins generally reside in membrane bilayers that have lipid asymmetry. However, in vitro studies of the impact of lipids upon membrane proteins are generally carried out in model membrane vesicles that lack lipid asymmetry. Our recently developed method to prepare lipid vesicles with asymmetry similar to that in plasma membranes and with controlled amounts of cholesterol was used to investigate the influence of lipid composition and lipid asymmetry upon the conformational behavior of the pore-forming, cholesterol-dependent cytolysin perfringolysin O (PFO). PFO conformational behavior in asymmetric vesicles was found to be distinct both from that in symmetric vesicles with the same lipid composition as the asymmetric vesicles and from that in vesicles containing either only the inner leaflet lipids from the asymmetric vesicles or only the outer leaflet lipids from the asymmetric vesicles. The presence of phosphatidylcholine in the outer leaflet increased the cholesterol concentration required to induce PFO binding, whereas phosphatidylethanolamine and phosphatidylserine in the inner leaflet of asymmetric vesicles stabilized the formation of a novel deeply inserted conformation that does not form pores, even though it contains transmembrane segments. This conformation may represent an important intermediate stage in PFO pore formation. These studies show that lipid asymmetry can strongly influence the behavior of membrane-inserted proteins.  相似文献   
2.
Streptococcus intermedius causes endogenous infections leading to abscesses. This species produces intermedilysin (ILY), a human-specific cytolysin. Because of the significant correlation between higher ILY production levels by S. intermedius and deep-seated abscesses, we constructed ily knockout mutant UNS38 B3 and complementation strain UNS38 B3R1 in order to investigate the role of ILY in deep-seated infections. Strain UNS38 reduced the viability of human liver cell line HepG2 at infection but not of rat liver cell line BRL3A. Isogenic mutant strain UNS38 B3 was not cytotoxic in either cell line. Quantification of S. intermedius revealed that in infected HepG2 cells UNS38 but not UNS38 B3 increased intracellularly concomitantly with increasing cell damage. This difference between UNS38 and UNS38 B3 was not observed with UNS38 B3R1. Invasion and proliferation in BRL3A cells was not observed. Masking UNS38 or UNS38 B3R1 with ILY antibody drastically decreased adherence and invasion of HepG2. Moreover, coating strain UNS38 B3 with ILY partially restored adherence to HepG2 but without subsequent bacterial growth. At 1 day post-infection, many intact UNS38 were detected in the damaged phagosomes of HepG2 with bacterial proliferation observed in the cytoplasm of dead HepG2 after an additional 2 day incubation. These results indicate that surface-bound ILY on S. intermedius is an important factor for invasion of human cells by this bacterium and that secretion of ILY within host cells is essential for subsequent host cell death. These data strongly implicate ILY as an important factor in the pathogenesis of abscesses in vivo by this streptococcus.  相似文献   
3.
Cholesterol‐dependent cytolysins (CDCs) are bacterial pore‐forming toxins secreted mainly by pathogenic Gram‐positive bacteria. CDCs generally recognize and bind to membrane cholesterol to create pores and lyse target cells. However, in contrast to typical CDCs such as streptolysin O, several atypical CDCs have been reported. The first of these was intermedilysin, which is secreted by Streptococcus intermedius and has human cell‐specificity, human CD59 (huCD59) being its receptor. In the study reported here, the diversity of receptor recognition among CDCs was investigated and multi‐receptor recognition characteristics were identified within this toxin family. Streptococcus mitis‐derived human platelet aggregation factor (Sm‐hPAF) secreted by S. mitis strain Nm‐65 isolated from a patient with Kawasaki disease was previously shown to hemolyze erythrocytes in a species‐dependent manner, its maximum activity being in human cells. In the present study, it was found that Sm‐hPAF recognizes both membrane cholesterol and huCD59 as receptors for triggering pore‐formation. Moreover, vaginolysin (VLY) of Gardnerella vaginalis showed similar characteristics to Sm‐hPAF regarding receptor recognition. On the basis of the results presented here, the mode of receptor recognition of CDCs can be categorized into the following three groups: (i) Group I, comprising typical CDCs with high affinity to cholesterol and no or very little affinity to huCD59; (ii) Group II, including atypical CDCs such as ILY, with no or very little affinity to cholesterol and high affinity to huCD59; and (iii) Group III, which contains atypical CDCs such as Sm‐hPAF and VLY with affinity to both cholesterol and huCD59.  相似文献   
4.
Cholesterol-dependent cytolysins (CDCs), a large family of bacterial toxins, are secreted as water-soluble monomers and yet are capable of generating oligomeric pores in membranes. Previous work has demonstrated that large scale structural rearrangements occur during this transition but the detailed mechanism by which these changes take place remains a puzzle. Despite evidence of structural and functional couplings between domains 3 and 4, the crystal structure of the CDC, perfringolysin O (PFO), shows the two domains do not make direct contact. Here, we present crystal structures of PFO that demonstrate movements of domain 4 are sufficient to trigger conformational changes that are transmitted through the molecule to the distant domain 3. These coupled movements result in a loss of many contacts between domain 3 and rest of the molecule that would eventually lead to the exposure of transmembrane regions in preparation for membrane insertion. The structures reveal a detailed molecular pathway that may be the basis for the allosteric transition that occurs on initial membrane binding leading to the exposure of membrane-spanning regions in a domain distant from the initial site of interaction.  相似文献   
5.
Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocinP118L) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2P134S). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. PodocinP118L and MEC-2P134S did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.  相似文献   
6.
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRα/β expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.  相似文献   
7.
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.  相似文献   
8.
Gimpl G  Gehrig-Burger K 《Steroids》2011,76(3):216-231
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.  相似文献   
9.
The assembly of the cholesterol-dependent cytolysin (CDC) oligomeric pore complex requires a complex choreography of secondary and tertiary structural changes in domain 3 (D3) of the CDC monomer structure. A point mutation was identified in the archetype CDC, perfringolysin O, that blocks detectable D3 structural changes and traps the membrane-bound monomers in an early and reversible stage of oligomer assembly. Using this and other mutants we show that specific D3 structural changes are propagated from one membrane-bound monomer to another. Propagation of these structural changes results in the exposure of a β-strand in D3 that allows it to pair and form edge-on interactions with a second β-strand of a free membrane-bound monomer. Pairing of these strands establishes the final geometry of the pore complex and is necessary to drive the formation of the β-barrel pore. These studies provide new insights into how structural information is propagated between membrane-bound monomers of a self-assembling system and the interactions that establish the geometry of the final pore complex.  相似文献   
10.
Hemolysins are cell-damaging protein toxins produced by pathogenic bacteria, which are usually released into the extracellular medium. Escherichia coli enterohemolysin is an intracellular toxin produced during the log phase of growth, with a maximal intracellular accumulation in the late log phase. In the present study, we have employed electron microscopy and SDS-PAGE to assess the effects of enterohemolysin on erythocyte membranes from different species. The erythrocyte cell damage began immediately after exposure to enterohemolysin with chemically detectable changes in cell membrane permeability, and the formation of surface lesions which increased rapidly in size. This process resulted in complete cell destruction. Ring-shaped structures with a diameter of 10nm were observed by electron microscopy after treatment of horse erythrocyte membranes with enterohemolysin. The ring structures were found clustered and irregularly distributed on the surface of the membranes. Following incubation of the toxin with horse erythrocyte ghosts and detergent-solubilization, the enterohemolysin was isolated from the cytoplasm in its membrane-bound form by sucrose density gradient. SDS-PAGE and silver staining of deoxycholate-solubilized target membranes revealed heterogeneous forms of the toxin. By using SDS-PAGE and gel filtration, the molecular weight of the toxin was estimated to be 35 kDa. With respect to species specificity, horse erythrocytes showed the highest sensitivity to the enterohemolysin, followed by human and guinea pig erythrocytes. The hemolytic sensitivity correlated with the toxin binding capacity of erythrocyte membranes of different animal species. The degree of hemolysis was unaffected by temperature in the range of 4 degrees C-37 degrees C and was optimal at pH 9.0. In contrast to pore-forming cytolysins, the hemolytic activity of enterohemolysin was enhanced continuously in the presence of increasing concentrations of dextran 4 and dextran 8 within the range of 5 to 30 mM. Trypsin sensitivity of membrane-bound enterohemolysin indicates that the cell surface is the most likely target site for this toxin. Additionally, the fact that proteinase and phosphatase inhibitors failed to inhibit lysis suggests that enterohemolysin alters and disrupts cell membranes by a detergent-like mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号