首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有13条查询结果,搜索用时 46 毫秒
1.
In this study, tri‐functional immunofluorescent probes (Ce6–IgG–QDs) based on covalent combinations of quantum dots (QDs), immunoglobulin G (IgG) and chlorin e6 (Ce6) were developed and their photodynamic ability to induce the death of cancer cells was demonstrated. Strategically, one type of second‐generation photosensitizer, Ce6, was first coupled with anti‐IgG antibody using the EDC/NHS cross‐linking method to construct the photosensitive immunoconjugate Ce6–IgG. Then, a complex of Ce6–IgG–QDs immunofluorescent probes was obtained in succession by covalently coupling Ce6–IgG to water soluble CdTe QDs. The as‐manufactured Ce6–IgG–QDs maintained the bio‐activities of both the antigen–antibody‐based tumour targeting effects of IgG and the photodynamic‐related anticancer activities of Ce6. By way of polyclonal antibody interaction with rabbit anti‐human epidermal growth factor receptor (anti‐EGFR antibody, N‐terminus), Ce6–IgG–QDs were labelled indirectly onto the surface of human hepatocarcinoma (HepG2) cells in cell recognition and killing experiments. The results indicated that the Ce6–IgG–QDs probes have excellent tumour cell selectivity and higher photosensitivity in photodynamic therapy (PDT) compared with Ce6 alone, due to their antibody‐based specific recognition and location of HepG2 cells and the photodynamic effects of Ce6 killed cells based on efficient fluorescence resonance energy transfer between QDs and Ce6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
Destruction of the neovasculature is essential for tumor eradication by photodynamic therapy. Since the over-expression of integrins is correlated with tumor angiogenesis, we conjugated a photosensitizer (5-(4-carboxyphenyl)-10,15,20-triphenylchlorin or porphyrin) to the alpha(v)beta(3) integrin specific peptide RGD (H-Arg-Gly-Asp-OH) motif as a common sequence. We reported an efficient solid-phase synthesis of a new family of peptidic photosensitizers with linear or cyclic[RGDfK] RGD motif and compared conjugates in vitro selectivity and photodynamic activity. The conjugates were characterized by (1)H NMR, MALDI, UV-visible spectroscopy and singlet oxygen formation was performed. Chlorins containing linear and constrained RGD motif were incorporated up to 98- and 80-fold more, respectively, than the unconjugated photosensitizer over a 24-h exposure in human umbilical vein endothelial cells (HUVEC) over-expressing alpha(v)beta(3) integrin. Peptidic moiety also led to a non-specific increased cellular uptake by murine mammary carcinoma cells (EMT-6), lacking RGD binding receptors. Survival measurements demonstrated that HUVEC were greatly sensitive to conjugates-mediated photodynamic therapy.  相似文献   
3.
Chlorin e(6) and its derivatives are promising sensitizers for photodynamic therapy (PDT). In order to compare the photodynamic effects of 8 novel derivatives of chlorin e(6) and to explore some mechanisms of their effects at the cellular level, we studied PDT-induced changes in bioelectric activity of crayfish mechanoreceptor neuron that was used as a sensitive experimental model. Neurons were insensitive to red laser irradiation (632.8 nm; 0.3 W/cm(2)) or to photosensitizers alone, but changed firing rate and died under the photodynamic effect of nanomolar concentrations of sensitizers. The dynamics of neuron responses depended on photosensitizer type and concentration. The dependence of neuron lifetime on photosensitizer concentration allowed comparing efficiencies of different photosensitizers. Radachlorin was the most potent photosensitizer comparable with mTHPC. High photodynamic efficiency of some chlorin e(6) derivatives was related to weak dependence of neuron lifetime on sensitizer concentration, indicating to the initiation of 2-3 secondary processes such as free radical membrane damage by one absorbed photon. Photodynamic efficiency of sensitizers depended on amphiphilicity influencing their intracellular localization.  相似文献   
4.
A novel 131-pyridine substituted chlorin e6 derivative (Chlorin A) was synthesized. It has characteristic long wavelength absorption at 664?nm and the emission wavelength at 667?nm. The generation rate of singlet oxygen of this compound is higher than Temoporfin. In vitro, Chlorin A showed higher phototoxicity against the human esophageal cancer cells than Temoporfin while with lower dark-toxicity. Its accumulation effect in mitochondria, lysosomes and endoplasmic reticulum was traced in subcellular localization tests. In flow cytometry obvious apoptosis cells were observed after 2?h irradiation. Significant in vivo photodynamic anti-tumor efficacy was also exhibited on mice bearing esophageal cancer. So Chlorin A could be suggested as a promising anti-tumor drug candidate in photodynamic therapy.  相似文献   
5.
Three novel 173-dicarboxylethyl-pyropheophorbide-a amide derivatives as photosensitizers for photodynamic therapy (PDT) were synthesized from pyropheophorbide-a (Ppa). Their photophysical and photochemical properties, intracellular localization, photocytotoxicity in vitro and in vivo were investigated. All target compounds exhibited low cytotoxicity in the dark and remarkable photocytotoxicity against human esophageal cancer cells. Among them, 1a showed highest singlet oxygen quantum yield. Upon light activation, 1a exhibited significant photocytotoxicity. After PDT treatment, the growth of Eca-109 tumor in nude mice was significantly inhibited. Therefore, 1a is a powerful and promising antitumor photosensitizer for PDT.  相似文献   
6.
New boron-containing chlorin derivatives 9 and 13 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized from photoprotoporphyrin IX dimethyl ester (2) and l-4-boronophenylalanine-related compounds. The in vivo biodistribution and clearance of 9 and 13 were investigated in tumor-bearing mice. The time to maximum accumulation of compound 13 in tumor tissue was one-fourth of that of compound 9, and compound 13 showed rapid clearance from normal tissues within 24 h after injection. The in vivo therapeutic efficacy of PDT using 13 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3 h after injection of 13. Tumor growth was significantly inhibited by PDT using 13. These results suggested that 13 might be a good candidate for both PDT and BNCT of cancer.  相似文献   
7.
Age-related macular degeneration (AMD) as well as other choroidal diseases, demand novel therapeutic methods. Photodynamic therapy (PDT), which uses light and photosensitizer (PS) to cause specific vascular occlusion in the macula, is an interesting alternative. The only drug approved for the PDT treatment of AMD (Verteporfin) has a natural tendency to aggregate, demanding an expensive separation procedure during purification. We report a novel and affordable PS that is intrinsically protected against aggregation, the Monomeric Chlorin at High Concentration (MCHC-Chlorin), whose liposomal formulation was developed to provoke effective photodynamic action on the choroidal vasculature. Our report starts by stablishing the conditions to allow the efficient synthesis of MCHC-Chlorin in high yields (92%). We then tested the light stimulated occlusion of choriocapillary vessels in rabbit’s eyes induced by the two MCHC-Chlorin isomers, which are directly obtained from the synthetic route. The PS formulation was infused in the rabbit’s ear vein and eyes were immediately irradiated at 650?nm. Indirect ophthalmoscopy, fundus photography, fluorescein angiography and histopathological evaluations were used to evaluate levels of photo-thrombosis and collateral damage. Choriocapillary occlusion was achieved in all treated rabbits’ eyes, while retina and sclera were completely preserved. There was no photochemical reaction in none of the eyes that received LASER without PS. Both MCHC-Chlorin isomers were separately tested and exhibited similar positive results with no systemic toxicity. Therefore, PDT occurred equally well in all treated eyes and none of the controls showed any effect in the ophthalmological exams. MCHC-Chlorin offers great potential and should be further studied as an alternative drug for choroidal diseases.  相似文献   
8.
This Letter reports the synthesis and the characterization of two new water-stable and soluble photosensitizer-conjugated magnetic nanoparticles (PS-MNPs) composed of an iron oxide magnetic core coated with a biocompatible dextran shell bearing polyaminated chlorin p6. Designed to improve cancer cell targeting, these photosensitizers were assayed for their antitumour activity against two variants of B16 mouse melanoma cell line (B16F10 and B16G4F, with or without melanin, respectively). Cell viability measurements demonstrated that PS-MNPs were more phototoxic than PEI-chlorin p6 making these photosensitizers promising for further in vitro and in vivo investigations.  相似文献   
9.
In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles’ affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers’ florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed.  相似文献   
10.
Photodynamic inactivation of bioluminescent Escherichia coli in the presence of cationic chlorin and isobacteriochlorin photosensitizers (PSs) obtained from 5,10,15,20-tetrakis(pentafluorophenyl)-porphyrin is described. The spectroscopic data for the neutral and cationic derivatives and their photophysical characterizations, especially fluorescence and singlet oxygen generation capacity are also reported. The results show that there is a direct relation between the inactivation efficiency and the increasing number of charges on the molecules. The combined effect of higher wavelength absorption and number of positive charges on the PS shows a 6.1 log reduction during the inactivation process. Overall this study shows that the cationic isobacteriochlorin has high potential to be used as PS for the inactivation of Gram (−) bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号