首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2022年   2篇
  2019年   2篇
  2015年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Serratia marcescens GEI strain was isolated from the gut of the workers of Chinese honey bee Apis cerana and evaluated in the laboratory for the control of Varroa destructor, a parasite of western honey bee A. mellifera. The supernatant and the collected proteins by ammonium sulfate from the bacterial cultures showed a strong miticidal effect on the female mites, with 100% mite mortality in 5 days. Heat (100 °C for 10 min) and proteinase K treatment of the collected proteins destroyed the miticidal activity. The improved miticial activity of this bacterial strain on chitin medium indicated the involvement of chitinases. The expressed chitinases ChiA, ChiB and ChiC1 from S. marcescens GEI by recombinant Escherichia coli showed pathogenicity against the mites in the laboratory. These chitinases were active in a broad pH range (5-9) and the optimum temperatures were between 60 and 75 °C. Synergistic effects of ChiA and ChiB on the miticidal activity against V. destructor were observed. The workers of both honey bee species were not sensitive to the spraying and feeding chitinases. These results provided alternative control strategies for Varroa mites, by formulating chitinase agents and by constructing transgenetic honey bees.  相似文献   
2.
Heavy-metal stress induced accumulation of chitinase isoforms in plants   总被引:3,自引:0,他引:3  
Plant chitinases belong to so-called pathogenesis related proteins and have mostly been detected in plants exposed to phytopathogenic viruses, bacteria or fungi. A few studies revealed that they might also be involved in plant defence against heavy metals. This work was undertaken to monitor the accumulation of chitinases in a set of heavy-metal stressed plants and bring evidence on their involvement during this kind of stress. Roots of different plant species including Vicia faba cvs. Aštar and Piešťansky, Pisum sativum, Hordeum vulgare, Zea mays and Glycine max were exposed to different concentrations of lead (300 and 500 mg l−1 Pb2+), cadmium (100 and 300 mg l−1 Cd2+) and arsenic (50 and 100 mg l−1 As3+). In each case, the toxicity effects were reflected in root growth retardation to 80–10% of control values. The most tolerant were beans, most sensitive was barley. Extracts from the most stressed roots were further assayed for chitinase activity upon separation on polyacrylamide gels. Our data showed that in each combination of genotype and metal ion there were 2–5 different chitinase isoforms significantly responsive to toxic environment when compared with water-treated controls. This confirms that chitinases are components of plant defence against higher concentrations of heavy metals. In addition, accumulation of some isoforms in response to one but not to other metal ions suggests that these enzymes might also be involved in a more (metal) specific mechanism in affected plants and their biological role is more complex than expected.  相似文献   
3.
The objective of this study was the selection of strains of Verticillium lecanii for solid-state fermentation (SSF) containing cuticle of Sphenarium purpurascens as an inducer of proteases and chitinases. The selection criteria were: growth at low water activity (aW), enzymatic activities (proteases and chitinases) and CO2 production rate. Three strains of V. lecanii were studied ATCC 26854, ATCC 46578 and a wild strain (WS). The strains ATCC 26854 and WS presented the best biomass production at low aW (0.957). Highest rates of clearing zones of casein and chitin were obtained for strains ATCC 26854 and WS. Best results of CO2 production in SSF were obtained by using V. lecanii ATCC 26854 which showed a maximal value (2.3 mg CO2 g IDM−1 h−1) at 36 h of cultivation. Although clearing zones of casein and chitin were partial criteria for strain selection. It was concluded that growth a low water activities and CO2 production rate, were more reliable criteria for selecting strains of V. lecanii for solid state culture using cuticle of insect as the main C and N source.  相似文献   
4.
Chitinase (EC 3.2.1.14) and β-1,3-glucanase (EC 3.2.1.39) activities in the flavedo of grapefruit ( Citrus paradisi cv. Marsh) were determined at 17 times during the course of fruit development. Chitinase activity is initially high in flavedo, but drops rapidly and is low, although fairly constant throughout the remainder of fruit development. In contrast to chitinase, β-1,3-glucanase activity is lowest in young fruit and increases during development. Western blots of crude flavedo extracts following SDS-PAGE were probed with antibodies raised against purified citrus chitinase and β-1,3-glucanase. Results of immunostaining revealed that changes in the activities of chitinase and β-1,3-glucanase were reflected in the amount of chitinase and glucanase protein present in the extracts. Only a single chitinase band was detected on western blots of crude flavedo extracts, whereas one glucanase band was present in young fruit and a second one appeared later in older fruit. Partial purification of flavedo chitinases and glucanases was performed using extracts prepared from immature and mature fruit for the two enzymes, respectively. Acidic and basic forms of both enzymes were present in the extracts; acidic and basic forms of chitinase were present in nearly equal amounts whereas basic glucanases predominated (91% of total activity). Acidic and basic chitinases differed in substrate specificity as well as products of degradation indicating the heterogeneous nature of the enzymes. Both acidic and basic glucanases required the presence of β-1,3 linkages for activity, were active against both soluble and insoluble β-1,3 glucans and generated similar products.  相似文献   
5.
An endochitinase gene (chiA-HD73) from the insecticidal bacterium Bacillus thuringiensis subsp. kurstaki HD-73 was cloned, sequenced, and expressed in Escherichia coli DH5αF′. The chitinase activity of the encoded protein was studied in assays with different fluorogenic substrates. The chiA-HD73 gene contained an open-reading frame that encoded an endochitinase with a deduced molecular weight and an isoelectric point of, respectively, 74.5 kDa and 5.75. A putative signal peptide with cleavage sites for both Gram-positive and Gram-negative bacteria was identified. Comparison of ChiA-HD73 with other chitinases revealed a modular structure composed of a catalytic domain and a putative chitin-binding domain. ChiA-HD73 hydrolyzed both tetrameric and trimeric fluorogenic substrates, but not a chitobiose analog substrate, suggesting that the activity of ChiA-HD73 is mainly endochitinolytic. In addition, ChiA-HD73 showed high enzymatic activity within a broad pH range (pH 4–10), with a peak activity at pH 6.5. The optimal temperature for enzymatic activity was observed at 55°C. Its activity in a broad range of temperatures and pH suggests ChiA-HD73 could have biotechnological applications in insect control, particularly in synergizing the insecticidal crystal protein toxins of B. thuringiensis.  相似文献   
6.
For the first time, the specific activities of chitinases, esterases, lipases and a serine protease (VCP1) produced by different isolates of the nematophagous fungus Pochonia chlamydosporia were quantified and compared. The isolates were grown for different time periods in a minimal liquid medium or media supplemented with 1 % chitin, 0.2 % gelatin or 2 % olive oil. Enzyme-specific activities were quantified in filtered culture supernatants using chromogenic p-nitrophenyl substrates (for chitinases, lipases and esterases) and a p-nitroanilide substrate (to measure the activity of the proteinase VCP1). Additionally, information on parasitic growth (nematode egg parasitism) and saprotrophic growth (plant rhizosphere colonisation) was collected. Results showed that the production of extracellular enzymes was influenced by the type of medium (p < 0.05) in which P. chlamydosporia was grown. Enzyme activity differed with time (p < 0.05), and significant differences were found between isolates (p < 0.001) and the amounts of enzymes produced (p < 0.001). However, no significant relationships were found between enzyme activities and parasitic or saprotrophic growth using Kendall's coefficient of concordance or Spearman rank correlation coefficient. The results provided new information about enzyme production in P. chlamydosporia and suggested that the mechanisms which regulate the trophic switch in this fungus are complex and dependent on several factors.  相似文献   
7.
Fungal chitinases are hydrolytic enzymes responsible for degradation of chitin. Chitinases are involved in several aspects of fungal biology, including cell wall remodelling during hyphal growth, conidial germination, autolysis, mycoparasitism and nutrient acquisition. They are divided into three distinct phylogenetic groups; A, B and C. Chitinases from the C group show structural similarities with the killer toxin zymocin produced by the yeast Kluyveromyces lactis and it is speculated that they have a similar function in filamentous ascomycetes, by facilitating penetration of toxins into cells of competing individuals. Genome analyses show that certain fungal species with a mycoparasitic lifestyle contain high numbers of killer toxin-like chitinases, compared with specialized saprotrophs and plant pathogens. Recent developments within this research field have revealed considerable variation in the modular structure and regulation of killer toxin-like chitinases, suggesting more diverse roles than merely fungal-fungal interactions. In this review, we summarize the current knowledge about this intriguing class of chitinases, including their modular structure, evolution, gene regulation, and functional analyses in mycoparasitic as well as in saprotrophic species. We also propose important questions for future research.  相似文献   
8.
Seven endochitinases (EC 3.2.1.14) (relative molecular masses 23000–28000 and isoelectric points 10.3–10.4) were purified from nonembryogenic Citrus sinensis L. Osbeck cv. Valencia callus tissue. The basic chitinase/lysozyme from this tissue (BCLVC) exhibited lysozyme, chitinase and chitosanase activities and was determined to be a class III chitinase. While BCLVC acted as a lysozyme at pH 4.5 and low ionic strength (0.03) it acted as a chitinase/chitosanase at high ionic strengths (0.2) with a pH optimum of ca. 5. The lysozyme activity of BCLVC was inhibited by histamine, imidazole, histidine and the N-acetyl-d-glucosamine oligosaccharide (GlcNAc)3. The basic chitinase from cv. Valencia callus, BCVC-2, had an N-terminal amino acid sequence similar to tomato and tobacco AP24 proteins. The sequences of the other five chitinases were N-terminal blocked. Whereas BCLVC was capable of hydrolyzing 13.8–100% acetylated chitosans and (GlcNAc)4–6 oligosaccharides, BCVC-2 hydrolyzed only 100% acetylated chitosan, and the remaining enzymes expressed varying degrees of hydrolytic capabilities. Experiments with (GlcNAc)2–6 suggest that BCLVC hydrolysis occurs in largely tetrasaccharide units whereas hydrolysis by the other chitinases occurs in disaccharide units. Cross-reactivities of the purified proteins with antibodies for a potato leaf chitinase (AbPLC), BCLVC, BCVC-3, and tomato AP24 indicate that these are separate and distinct proteins.Mention of a trademark, warranty, propriety, or vendor does not constitute a guarantee by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.Abbreviations Ab antibody - BCLVC basic chitinase/lysozyme cv. Valencia callus - BCVC basic chitinase cv. Valencia callus - CE capillary electrophoresis - CM-chitin-RBV carboxymethyl-chitin-remazol brilliant violet - GlcNAc N-acetyl-d-glucosamine - HEWL hen egg-white lysozyme - Mr relativemolecular mass - pI isoelectric point - PLC potato leaf chitinase - PR pathogenesis-related - SEC size exclusion chromatography We thank Mr. M. Burkhart, Ms. T.-T. Ho, and Ms. M. Doherty for their valuable technical assistance. A portion of the funding for this work was made available from the Citrus Production Research Marketing Order by the Division of Marketing and Development, Florida Department of Agriculture and Consumer Services, Bob Crawford, Commissioner.  相似文献   
9.
10.
Chitin is one of the most abundant biomaterials in nature. The biosynthesis and degradation of chitin in insects are complex and dynamically regulated to cope with insect growth and development. Chitin metabolism in insects is known to involve numerous enzymes, including chitin synthases (synthesis of chitin), chitin deacetylases (modification of chitin by deacetylation) and chitinases (degradation of chitin by hydrolysis). In this study, we conducted a genome-wide search and analysis of genes encoding these chitin metabolism enzymes in Manduca sexta. Our analysis confirmed that only two chitin synthases are present in M. sexta as in most other arthropods. Eleven chitin deacetylases (encoded by nine genes) were identified, with at least one representative in each of the five phylogenetic groups that have been described for chitin deacetylases to date. Eleven genes encoding for family 18 chitinases (GH18) were found in the M. sexta genome. Based on the presence of conserved sequence motifs in the catalytic sequences and phylogenetic relationships, two of the M. sexta chitinases did not cluster with any of the current eight phylogenetic groups of chitinases: two new groups were created (groups IX and X) and their characteristics are described. The result of the analysis of the Lepidoptera-specific chitinase-h (group h) is consistent with its proposed bacterial origin. By analyzing chitinases from fourteen species that belong to seven different phylogenetic groups, we reveal that the chitinase genes appear to have evolved sequentially in the arthropod lineage to achieve the current high level of diversity observed in M. sexta. Based on the sequence conservation of the catalytic domains and on their developmental stage- and tissue-specific expression, we propose putative functions for each group in each category of enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号