首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2013年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Wu L  Cui Y  Hong Y  Chen S 《Microbiological research》2011,166(8):606-617
We here report the sequence and functional analysis of cstB of Azospirillum brasilense Sp7. The predicted cstB contains C-terminal two PAS domains and N-terminal part which has similarity with CheB-CheR fusion protein. cstB mutants had reduced swarming ability compared to that of A. brasilense wild-type strain, implying that cstB was involved in chemotaxis in A. brasilense. A microscopic analysis revealed that cstB mutants developed mature cyst cells more quickly than wild type, indicating that cstB is involved in cyst formation. cstB mutants were affected in colony morphology and the production of exopolysaccharides (EPS) which are essential for A. brasilense cells to differentiate into cyst-like forms. These observations suggested that cstB was a multi-effector involved in cyst development and chemotaxis in A. brasilense.  相似文献   
2.
HemAT from Bacillus subtilis is a new type of heme protein responsible for sensing oxygen. The structural and functional properties of the full-length HemAT protein, the sensor domain (1-178), and Tyr-70 mutants have been characterized. Kinetic and equilibrium measurements reveal that both full-length HemAT and the sensor domain show two distinct O(2) binding components. The high-affinity component has a K(dissociation) approximately 1-2 microM and a normal O(2) dissociation rate constant, k(O2) = 50-80 s(-1). The low-affinity component has a K(dissociation) approximately 50-100 microM and a large O(2) dissociation rate constant equal to approximately 2000 s(-1). The low n-value and biphasic character of the equilibrium curve indicate that O(2) binding to HemAT involves either independent binding to high- and low-affinity subunits in the dimer or negative cooperativity. Replacement of Tyr-70(B10) with Phe, Leu, or Trp in the sensor domain causes dramatic increases in k(O2) for both the high- and low-affinity components. In contrast, the rates and affinity for CO binding are little affected by loss of the Tyr-70 hydroxyl group. These results suggest highly dynamic behavior for the Tyr-70 side chain and the fraction of the "up" versus "down" conformation is strongly influenced by the nature of the iron-ligand complex. As a result of having both high- and low-affinity components, HemAT can respond to oxygen concentration gradients under both hypoxic (0-10 microM) and aerobic (50-250 microM) conditions, a property which could, in principle, be important for a robust sensing system. The unusual ligand-binding properties of HemAT suggest that asymmetry and apparent negative cooperativity play an important role in the signal transduction pathway.  相似文献   
3.
Chemosensory pathways are a major signal transduction mechanism in bacteria. CheR methyltransferases catalyze the methylation of the cytosolic signaling domain of chemoreceptors and are among the core proteins of chemosensory cascades. These enzymes have primarily been studied Escherichia coli and Salmonella typhimurium, which possess a single CheR involved in chemotaxis. Many other bacteria possess multiple cheR genes. Because the sequences of chemoreceptor signaling domains are highly conserved, it remains to be established with what degree of specificity CheR paralogues exert their activity. We report here a comparative analysis of the three CheR paralogues of Pseudomonas putida. Isothermal titration calorimetry studies show that these paralogues bind the product of the methylation reaction, S-adenosylhomocysteine, with much higher affinity (KD of 0.14–2.2 μm) than the substrate S-adenosylmethionine (KD of 22–43 μm), which indicates product feedback inhibition. Product binding was particularly tight for CheR2. Analytical ultracentrifugation experiments demonstrate that CheR2 is monomeric in the absence and presence of S-adenosylmethionine or S-adenosylhomocysteine. Methylation assays show that CheR2, but not the other paralogues, methylates the McpS and McpT chemotaxis receptors. The mutant in CheR2 was deficient in chemotaxis, whereas mutation of CheR1 and CheR3 had either no or little effect on chemotaxis. In contrast, biofilm formation of the CheR1 mutant was largely impaired but not affected in the other mutants. We conclude that CheR2 forms part of a chemotaxis pathway, and CheR1 forms part of a chemosensory route that controls biofilm formation. Data suggest that CheR methyltransferases act with high specificity on their cognate chemoreceptors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号