首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2015年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 203 毫秒
1
1.
The lens protein, alpha-crystallin, is a molecular chaperone that prevents the thermal aggregation of other proteins. The C-terminal domain of this protein (homologous to domains present in small heat-shock proteins) is implicated in chaperone function, although the domain itself has been reported to show no chaperone activity. Here, we show that the domain can be excised out of the intact alphaB polypeptide and recovered directly in pure form through the transfer of CNBr digests of whole lens homogenates into urea-containing buffer, followed by dialysis-based refolding of digests under acidic conditions and a single gel-filtration purification step. The folded (beta sheet) domain thus obtained is found to be (a) predominantly trimeric, and to display (b) significant surface hydrophobicity, (c) a marked tendency to undergo degradation, and (d) a tendency to aggregate upon heating, and on exposure to UV light. Thus, the twin 'chaperone' features of multimericity and surface hydrophobicity are clearly seen to be insufficient for this domain to function as a chaperone. Since alpha-crystallin interacts with its substrates through hydrophobic interactions, the hydrophobicity of the excised domain indicates that separation of domains may regulate function; at the same time, the fact is also highlighted that surface hydrophobicity is a liability in a chaperone since heating strengthens hydrophobic interactions and can potentially promote self-aggregation. Thus, it would appear that the role of the N-terminal domain in alpha-crystallin is to facilitate the creation of a porous, hollow structural framework of >/=24 subunits in which solubility is effected through increase in the ratio of exposed surface area to buried volume. Trimers of interacting C-terminal domains anchored to this superstructure, and positioned within its interior, might allow hydrophobic surfaces to remain accessible to substrates without compromising solubility.  相似文献   
2.
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10–15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.  相似文献   
3.
Although many bacteria contain only a single groE operon encoding the essential chaperones GroES and GroEL, examples of bacteria containing more than one groE operon are common. The root-nodulating bacterium Rhizobium leguminosarum contains at least three operons encoding homologues to Escherichia coli GroEL, referred to as Cpn60.1, Cpn60.2 and Cpn60.3, respectively. We report here a detailed analysis of the requirement for and relative levels of these three proteins. Cpn60.1 is present at higher levels than Cpn60.2, and Cpn60.3 protein could not be detected under any conditions although the cpn60.3 gene is transcribed under anaerobic conditions. Insertion mutations could not be constructed in cpn60.1 unless a complementing copy was present, showing that this gene is essential for growth under the conditions used here. Both cpn60.2 and cpn60.3 could be inactivated with no loss of viability, and a double cpn60.2 cpn60.3 mutant was also constructed which was fully viable. Thus only Cpn60.1 is required for growth of this organism.Dedicated to the memory of Professor V. Javier Benedí, 1957–2002  相似文献   
4.
The availability of protein samples of sufficient quality and in sufficient quantity is a driving force in biology and biotechnology. Protein samples that are free of critical contaminants are required for specific assays. Large amounts of highly homogeneous and reproducible material are needed for crystallography and nuclear magnetic resonance studies of protein structure. Protein-based therapeutic factors used in human medicine must not contain any contaminants that might interfere with treatment. The roles played by molecular chaperones in protein folding and in many cellular processes make these proteins very attractive candidates as biochemical reagents, and the class of chaperones called chaperonins is one of the most important candidates. Methods for successfully purifying chaperonins are needed to advance the field of chaperonin-mediated protein folding. This article outlines the strategies and methods used to obtain pure chaperonin samples from different biological sources. The objective is to help new researchers obtain better quality samples of chaperonins from many new organisms.  相似文献   
5.
Recombination is well known as a complicating factor in the interpretation of molecular phylogenies. Here we describe a maximum likelihood sliding window method based on a likelihood ratio test for scanning DNA sequence alignments for regions of incongruent phylogenetic signals, such as those influenced by recombination. Using this method, we identify several instances of gene conversion between paralogous chaperonin genes in euryarchaeote Archaea, many of which are not detected by two other widely used methods. In the Thermococcus/Pyrococcus lineage, where a gene duplication producing a and b paralogues predates the divergence of Thermococcus strains KS-1 and KS-8, gene conversion has homogenized portions of the a and b genes in KS-8 since the divergence of these two strains. A region near the 3′ end of the a and b paralogues in the methanogen Methanobacterium thermoautotrophicum also appears to have undergone gene conversion. We apply the method to two additional test data sets, the argF gene of Neisseria and a set of actin paralogues in maize, and show that it successfully identifies all the recombinant regions that were previously detected with other methods. Our approach is relatively insensitive to the presence of divergent sequences in the alignment, making it ideal for detecting recombination between both closely and distantly related genes.  相似文献   
6.
The purpose of this work was to determine in colon mucosa of Crohn’s disease (CD) and ulcerative colitis (UC) in relapse: a) the levels of the chaperonins Hsp60 and Hsp10; b) the quantity of inflammatory cells; and c) if the levels of chaperonins parallel those of inflammation cells. Twenty cases of CD and UC and twenty normal controls (NC) were studied using immunohistochemistry, Western blotting and immunofluorescence. Immunohistochemically, Hsp60 and Hsp10 were increased in both inflammatory bowel diseases (IBD) compared to NC. These results were confirmed by Western blotting. Hsp60 and Hsp10 occurred in the cytoplasm of epithelial cells in CD and UC but not in NC. Hsp60 and Hsp10 co-localised to epithelial cells of mucosal glands but not always in connective tissue cells of lamina propria, where only Hsp60 or, less often, Hsp10 was found. Cells typical of inflammation were significantly more abundant in CD and UC than in NC. Since chaperonins are key factors in the activation of the immune system leading to inflammation, we propose that they play a central role in the pathogenesis of the two diseases, which, consequently, ought to be studied as chaperonopathies.  相似文献   
7.
Differential chemical modification ofE. coli chaperonin 60 (cpn60) was achieved by using one of several sulfhydryl-directed reagents. For native cpn60, the three cysteines were accessible for reaction with N-ethylmaleimide (NEM), while only two of them are accessible to the larger reagent 4,4-dipyridyl disulfide (4-PDS). However, no sulfhydryl groups were modified when the even larger reagents 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) or 2-(4-(iodoacetamido)anilino) naphthalene-6-sulfonic acid (IAANS), were employed, unless the chaperonin was unfolded. The cpn60 that had been covalently modified with NEM or IAANS, was not able to support the chaperonin-assisted refolding of the mitochondrial enzyme rhodanese, which also requires cpn10 and ATP hydrolysis. However, both modified forms of cpn60 were able to form binary complexes with rhodanese, as demonstrated by their ability to arrest the spontaneous refolding of the enzyme. That is, chemical modification with these sulfhydryl-directed reagents produced a species that was not prevented from interaction with partially folded rhodanese, but that was prevented from supporting a subsequent step(s) during the chaperonin-assisted refolding process.  相似文献   
8.
In this study we present evidence indicating that GroE chaperonins mediate de novo protein folding of heterodimeric and monomeric luciferases under heat shock or sub-heat shock conditions in vivo. The effects of additional groESL and groEL genes on the bioluminescence of Escherichia coli cells expressing different bacterial luciferase genes at various temperatures were directly studied in cells growing in liquid culture. Data indicate that at 42° C GroESL chaperonins are required for the folding of the subunit polypeptide of the heterodimeric luciferase from the mesophilic bacterium Vibrio harveyi MAV (B392). In contrast, the small number of amino acid substitutions present in the luciferase subunit polypeptide from the thermotolerant V. harveyi CTP5 suppresses this requirement for GroE chaperonins, and greatly reduces interaction between the subunit polypeptide and GroEL chaperonin. In addition, GroESL are required for the de novo folding at 37° C of a MAV luciferase fusion polypeptide that is functional as a monomer. No such requirement for luciferase activity is observed at that temperature with a fusion of the CTP5 and subunit polypeptides, although GroE chaperonins can still mediate folding of the CTP5 fusion luciferase. Bacterial luciferases provide a unique system for direct observation of the effects of GroE chaperonins on protein folding and enzyme assembly in living cells. Furthermore, they offer a sensitive and simple assay system for the identification of polypeptide domains required for GroEL protein binding.  相似文献   
9.
Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.  相似文献   
10.
Molecular Chaperones and Mitochondrial Protein Folding   总被引:7,自引:0,他引:7  
Precursor proteins destined for the mitochondrial matrix traverse inner and outer organelle membranes in an extended conformation. Translocation events are therefore integrally coupled to the processes of protein unfolding in the cytosol and protein refolding in the matrix. To successfully import proteins from the cytoplasm into mitochondria, cells have recruited a variety of molecular chaperone systems and folding catalysts. Within the organelles, mitochondrial Hsp70 (mt-Hsp70) is a major player in this process and exerts multiple functions. First, mt-Hsp70 binds together with cohort proteins to incoming polypeptide chains, thus conferring unidirectionality on the translocation process, and then assists in their refolding. A subset of imported proteins requires additional assistance by chaperonins of the Hsp60/Hsp10 family. Protein folding occurs within the cavity of these cylindrical complexes. A productive interaction of precursor proteins with molecular chaperones in the matrix is not only crucial for correct refolding and assembly, but also for processing of presequences, intramitochondrial sorting, and degradation of proteins. This review focuses on the role of mt-Hsp70 and Hsp60/Hsp10 in protein folding in the mitochondrial matrix and discusses recent findings on their molecular mechanism of action.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号