首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2007年   1篇
  2000年   1篇
  1998年   1篇
  1996年   3篇
  1992年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Evidence is presented that Polian vesicles of the sea cucumber, Holothuria cinerascens, a member of an echinoderm class considered close to the vertebrate evolutionary line, are organs of inflammatory (including immunologic) responsiveness. As such, they might represent a rudimentary beginning of what later evolved into the vertebrate lymphoreticular system.  相似文献   
2.
Bagarinao  T.  Lantin-Olaguer  I. 《Hydrobiologia》2000,437(1-3):1-16
The potamidid snail Cerithidea cingulata is considered a pest in brackishwater milkfish ponds in the Philippines and has been controlled by the triphenyltin (TPT) compounds Aquatin and Brestan. But TPT is also toxic to other invertebrates, fishes, algae, bacteria and people, and high TPT residues occur in sea foods including milkfish. Thus, control of snails in milkfish ponds should be shifted from reliance on TPT to an integrated pest management (IPM) strategy. To formulate a responsible IPM, studies were conducted on C. cingulata in ponds and mangroves and the available data were synthesized with the relevant information from the literature. The deposit-feeding C. cingulata is a native resident of mangrove areas and becomes a problem in mangrove-derived ponds where the lack of competitors and predators results in 'ecological release' and population explosion. Snail densities ranged 1–470 m–2 in the mangroves and 100–5000 m–2 in ponds. In ponds, snails ranged 2–40 mm in shell length; those 25 mm long and 8 mm wide weighed 1 g on average, and had 150 mg flesh. Snails matured at 20 mm long and reproduced the whole year with a peak in Mar–Sep at water temperatures of 24–36 °C. Enriched sediments and stagnant water in ponds allowed fast growth and reproduction, low dispersal and high recruitment of snails. Snails were very tolerant to hypoxia and adverse conditions, but were killed within a week by sun-drying or by salinities of 48–70 and within 3 d by ammonium phosphate at 10 g l–1 or urea at 5 g l–1. IPM of snails requires changes in mind sets and perspectives of milkfish farmers and industry supporters and changes in farm practices and management. Snails must be viewed as a resource from which income can be made and employment can be generated. Harvest of snails for shellcraft and other enterprises also effectively removes the spawning population. Complete draining and sun-drying of ponds after harvest kills the adult snails and the egg strings on the bottom. Snails in puddles in the ponds may be killed by the usual nitrogen fertilizers and lime applied during pond preparation. Water input may be timed with periods of low veliger counts in the supply water. These IPM recommendations have yet to be verified.  相似文献   
3.
The effects of starvation on daily growth and increment formation in the otolith were examined using a double oxytetracycline-labelling method on larval milkfish, Chanos chanos (Forsskål), reared under different feeding regimes. The results indicated that the differences in body and otolith growth between the larvae fed once and three times a day were not significant, and that the otolith growth increment was deposited daily in both groups of fed larvae. In contrast, the starved larvae grew at a slower rate than fed larvae in body length and otolith dimensions, and the otolith growth increment in the starved larvae was not deposited on a daily basis. After undergoing starvation, the larvae were unable to recover their normal growth either in otolith increment deposition or in body and otolith growth even though they were fed. Therefore, the application of ageing techniques based on counting otolith growth increments seems to be inaccurate for starved larvae.  相似文献   
4.
Bagarinao  T.  Lantin-Olaguer  I. 《Hydrobiologia》1998,382(1-3):137-150
Fish kills of milkfish Chanos chanos and tilapia Oreochromis spp. now occur frequently in brackish, marine, and freshwater farms (ponds, pens, and cages) in the Philippines. Aquafarms with high organic load, limited water exchange and circulation, no aeration, and high stocking and feeding rates can become oxygen-depleted and allow sulfide from the sediments to appear in the water column and poison free-swimming fish. The sulfide tolerance of 2–5 g milkfish and 5–8 g O. mossambicus was determined in 25-liter aquaria with flow-through sea water (100 ml min-1) at 26–30 °C and sulfide stock solutions pumped in at 1ml min-1. Total sulfide concentrations in the aquaria were measured by the methylene blue method and used in the regression against the probits of % survival. Four experiments showed that the two species have similar sulfide tolerance. In sea water of pH 8–8.5, about 163 ± 68 μM or 5.2 ± 2.2 mg l-1 total sulfide (mean ± 2 se) or 10 μM or 313 μg l-1 H2S was lethal to 50% of the fish in 4–8 h, and 61 ± 3 μM total sulfide or 4 μM H2S in 24–96 h (to convert all sulfide concentrations: 1 μM = 32 μg l-1). Earthen pond bottoms had 0–382 μM total dissolved sulfide (mean ± sd = 54 ± 79 μM, n = 76); a tenth of the samples had >200 μM. The water column may have such sulfide levels under hypoxic or anoxic conditions. To simulate some of the conditions during fish kills, 5–12 g milkfish were exposed to an abrupt increase in sulfide, alone or in combination with progressive respiratory hypoxia and decreasing pH. The tests were done in the same flow-through set-up but with sulfide pumped in at 25 ml min-1. The lethal concentration for 50% of the fish was 197 μM total sulfide or 12 μM H2S at 2 h, but 28–53 μM sulfide allowed fish to survive 6–10 h. Milkfish in aquaria with no aeration nor flow-through sea water died of respiratory hypoxia in 5–8 h when oxygen dropped from 6 to 1 mg l-1. Under respiratory hypoxia with 30–115 μM sulfide, the fish died in 2.5–4 h. Tests with low pH were done by pumping a weak sulfuric acid solution at 25 ml min-1 into aquaria with flow-through sea water such that the pH dropped from 8 to 4 in 5 h. Under these conditions, milkfish died in 7–9 h when the pH was 3.5. When 30–93 μM sulfide was pumped in with the acid, the fish died in 2–6 h when the pH was still 4.5–6.3. Thus, sulfide, hypoxia, and low pH are each toxic to milkfish at particular levels and aggravate each other's toxicity. Aquafarms must be well oxygenated to prevent sulfide toxicity and fish kills. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
During embryogenesis of Chanos chanos , more than half of the yolk was consumed and the majority of it was converted into larval tissue. Salinity affected both yolk absorption and embryonic and larval growth. Larvae hatched in 20% had larger yolk reserves but were smaller and grew more slowly than larvae in 35 and 50%. Larvae hatched in 35 and 50% had equal amounts of yolk but those from 35% were larger. Oxygen consumption rates increased during development (from 0.06 ± 0.01 μl O2 egg–1 h–1 by blastulae to 0.37 ± 0-01 μl O2 egg–1 h–1 by prehatch embryos and 0–43 ± 0–03 μl O2 larva –1 h –1 by newly-hatched larvae) and were significantly affected by salinity. Eggs and yolk-sac larvae incubated in 35% consumed more oxygen than those in the low and high salinities. Salinity affected both the rate and pattern of yolk utilization but salinity-related differences in metabolism, yolk absorption, and growth were not related directly to the osmotic gradient. Low salinity retarded yolk absorption while high salinity reduced yolk utilization efficiencies. Differences in oxygen consumption rates were probably related to variations in the relative amounts of metabolically active embryonic and larval tissue and/or higher activity levels rather than differential osmoregulatory costs. 35% is probably the most suitable salinity for incubation and larval rearing of milkfish.  相似文献   
6.
The osteological development of elements comprising the oral cavity and fins was examined in early stage larvae of laboratory-reared milkfish,Chanos chanos, from hatching to 200 hours after hatching. Fundamental elements of the oral cavity had developed by the time of initial mouth opening, 54 hours after hatching. The oral cavity was long and cylindrical, with a short, robust Meckel's cartilage, and robust quadrate and symplectic-hyomandibular cartilages. The initial ossification of existing elements and addition of new elements occurred between 120–146 hours after initial mouth opening (HAMO), whereas the cartilaginous basihyal and caudal fin-supports appeared at 37.5 and 61.5 HAMO, respectively. Based on the morphology and developmental patterns of characters examined in this study, the feeding mode of early stage larval milkfish was considered to be “straining,” with an improvement in feeding ability occurring between 120–146 HAMO.  相似文献   
7.
In order to clarify the nutritional conditions of larval milkfish in the surf zone, the following parameters were examined: 1) DNA and RNA content and RNA/DNA ratio of fed and unfed larvae collected from the surf zone and reared in the laboratory; 2) survival rate of the unfed larvae; and 3) total length, otolith increment counts and RNA/DNA ratio of wild larvae collected daily from the surf zone. The DNA and RNA content of the unfed larvae decreased, but increased in fed larvae. The RNA/DNA ratio decreased in unfed larvae, whereas in the fed larvae it decreased for the first three days after capture and increased thereafter. These results indicated that the values of DNA and RNA content and RNA/DNA ratio could be used as an indicator of nutritional condition of milkfish larvae after 6 days of starvation. Although total length of the wild-larvae did not show serial changes, their otolith increment counts showed continuous increases, indicating that the larvae sojourned in the surf zone for several days. In the same period, RNA/DNA ratios of the wild larvae decreased continuously, the ratios of larvae with fewer otolith increment counts being relatively higher than those of larvae with greater increment counts. Based on these results, the milkfish larvae remaining in the surf zone were concluded as being under insufficient nutritional conditions.  相似文献   
8.
9.
Oxygen uptake rates and yolk-inclusive dry weiGhts were measured during the egg and yolk-sac larval stages of milkfish, Chanos chanos (Forsskal). Oxygen uptake by eggs and yolk-sac larvae was measured to assess the effects of four salinities (20,25,30,35 ppt) at 28°C. The effects of three temperatures (23,28,33°C) on oxygen uptake by yolk-sac larvae were determined at a salinity of 35 ppt. Dry weights were measured throughout embryonic development at 28°C and the yolk-sac stage at 23.28 and 33°C.
Oxygen uptake rates of eggs increased more than fivefold during embryogenesis (0.07±0.03 to 0.40 ± 03 μl O2 egg −1 h −1;blastula to prehatch stage). Larval oxygen uptake did not change with age but was affected by rearing temperature (0.33 ± 0.08, 0.44 ± 0.07 and 0.63 ± 0.13 μl O2 larva −1 h−1 at 23, 28 and 33°C, respectively; Q10= 1.93). Acute temperature changes from 28 to 33°C caused significant increases in oxygen uptake by embryos (Q 10= 1.69–3.58) and yolk-sac larvae (Q 10=2.55). Salinity did not affect metabolic rates.
Dry weight of eggs incubated at 28°C decreased 13% from fertilization to hatching. Incubation temperatures from 23–33°C did not affect dry weights at hatching. Rearing temperatures significantly affected the rate of larval yolk absorption (Q 10= 2.25).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号