首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2018年   2篇
  2015年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  1999年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Li YJ  Ji YH 《生理科学进展》1999,30(4):297-302
通道病理学是当今国际学术发展中一门新兴学科。本文将针对有关电压门控钠通道的变异所导致的机体疾患,如高血钾性周期性麻痹,先天性肌强直等骨骼肌疾患,LQT3,原发笥心室纤颤等心脏病及其所涉及的钠通道突变体,通道的突变位点和电生理性质等一些研究资料与进展作一概括介绍。  相似文献   
2.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, an ATP binding cassette (ABC) protein whose defects cause the deadly genetic disease cystic fibrosis (CF), encompasses two nucleotide binding domains (NBD1 and NBD2). Recent studies indicate that in the presence of ATP, the two NBDs coalesce into a dimer, trapping an ATP molecule in each of the two interfacial composite ATP binding sites (site 1 and site 2). Experimental evidence also suggests that CFTR gating is mainly controlled by ATP binding and hydrolysis in site 2, whereas site 1, which harbors several non-canonical substitutions in ATP-interacting motifs, is considered degenerated. The CF-associated mutation G551D, by introducing a bulky and negatively charged side chain into site 2, completely abolishes ATP-induced openings of CFTR. Here, we report a strategy to optimize site 1 for ATP binding by converting two amino acid residues to ABC consensus (i.e. H1348G) or more commonly seen residues in other ABC proteins (i.e. W401Y,W401F). Introducing either one or both of these mutations into G551D-CFTR confers ATP responsiveness for this disease-associated mutant channel. We further showed that the same maneuver also improved the function of WT-CFTR and the most common CF-associated ΔF508 channels, both of which rely on site 2 for gating control. Thus, our results demonstrated that the degenerated site 1 can be rebuilt to complement or support site 2 for CFTR function. Possible approaches for developing CFTR potentiators targeting site 1 will be discussed.  相似文献   
3.
4.
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.  相似文献   
5.
Hypokalemic periodic paralysis type 2 (hypoPP2) is an inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the alpha subunit of the skeletal muscle Na+ channel (Nav1.4). All hypoPP2 mutations reported so far target an arginine residue of the voltage sensor S4 of domain II (R672/G/H/S). We identified a novel hypoPP2 mutation that neutralizes an arginine residue in DIII-S4 (R1132Q), and studied its functional consequences in HEK cells transfected with the human SCN4A cDNA. Whole-cell current recordings revealed an enhancement of both fast and slow inactivation, as well as a depolarizing shift of the activation curve. The unitary Na+ conductance remained normal in R1132Q and in R672S mutants, and cannot therefore account for the reduction of Na+ current presumed in hypoPP2. Altogether, our results provide a clear evidence for the role of R1132 in channel activation and inactivation, and confirm loss of function effects of hypoPP2 mutations leading to muscle hypoexcitability.  相似文献   
6.
Potassium channels encoded by hERG (human ether-à-go-go-related gene) underlie the cardiac rapid delayed rectifier K+ current (IKr) and hERG mutations underpin clinically important repolarization disorders. Virtually all electrophysiological investigations of hERG mutations have studied exclusively the hERG1a isoform; however, recent evidence indicates that native IKr channels may be comprised of hERG1a together with the hERG1b variant, which has a shorter N-terminus. Here, for the first time, electrophysiological effects were studied of a gain-of-function hERG mutation (N588K; responsible for the ‘SQT1’ variant of the short QT syndrome) on current (IhERG1a/1b) carried by co-expressed hERG1a/1b channels. There were no significant effects of N588K on IhERG1a/1b activation or deactivation, but N588K IhERG1a/1b showed little inactivation up to highly positive voltages (?+80 mV), a more marked effect than seen for hERG1a expressed alone. IhERG1a/1b under action potential voltage-clamp, and the effects on this of the N588K mutation, also showed differences from those previously reported for hERG1a. The amplified attenuation of IhERG inactivation for the N588K mutation reported here indicates that the study of co-expressed hERG1a/1b channels should be considered when investigating clinically relevant hERG channel mutations, even if these reside outside of the N-terminus region.  相似文献   
7.
The second tryptophan (W) residue of the conserved WW motif in the pore helix of many K+ channel subunit is thought to interact with the tyrosine (Y) residues of the selectivity filter. A missense mutation causing the replacement of the corresponding residues with an arginine (W309R) occurs in KCNQ3 subunits forming part of M-channels. In this study, we examined the functional consequences of the W309R mutation in heterogously expressed KCNQ channels. Homomeric KCNQ3W309R channels lacked KCNQ currents. Heteromeric KCNQ2/KCNQ3W309R channels displayed a dominant-negative suppression of current and a significant modification in gating properties when compared with heteromeric KCNQ3/KCNQ2 channels mimicking the M-channels. A three-dimensional homology model in the W309R mutant indicated that the R side chain of pore helices is too far from the Y side chain of the selectivity filter to interact via hydrogen bonds with each other and stabilize the pore structure. Collectively, the present results suggest that the second W residues of pore helices and their chemical interaction with the Y residues of the selectivity filter are essential for normal K+ channel function. This pore-helix mutation, if occurs in the brain M channels, could thus lead to a channel dysfunction sufficient to trigger epileptic hyperexcitability.  相似文献   
8.
Both gain- and loss-of-function mutations in the SCN5A gene, which encodes the α-subunit of the cardiac voltage-gated Na+ channel Nav1.5, are well established to underlie hereditary arrhythmic syndromes (cardiac channelopathies) such as the type 3 long QT syndrome, cardiac conduction diseases, Brugada syndrome, sick sinus syndrome, atrial standstill and numerous overlap syndromes. Although patch-clamp studies in heterologous expression systems have provided important information to understand the genotype–phenotype relationships of these diseases, they could not clarify how mutations can be responsible for such a large spectrum of diseases, the late age of onset or the progressiveness of some of them, and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological sequence of cardiac SCN5A-related channelopathies and several mouse models have been established. Here, we review the results obtained on these models that, for most of them, convincingly recapitulate the clinical phenotypes of the patients but that also have their own limitations. Mouse models turn out to be powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the cellular consequences of SCN5A mutations such as the remodelling of other gene expression that might participate in the overall phenotype and explain some of the differences among patients. Finally, they also constitute useful tools for future studies addressing as yet unanswered questions, such as the role of genetic and environmental modifiers on cardiac conduction and repolarisation.  相似文献   
9.
Deafness is said to be the only extracardiac manifestation of long-QT syndrome. Whether long-QT syndrome manifests in the skeletal muscle as well, has not been investigated so far. Six affected members of two families with long-QT syndrome without deafness (Romano–Ward syndrome) underwent a clinical neurological examination, nerve conduction studies and needle electromyography. The clinical neurological examination and nerve conduction studies were normal but abundant spontaneous activity (fibrillations and bursts of fibrillations) could be recorded from the right biceps brachii muscle (one patient) and the right abductor pollicis brevis muscle (all patients). Since all other causes were excluded, spontaneous discharges were interpreted to be related to the long-QT syndrome. In conclusion, long-QT syndrome does not seem to be confined to the heart but may involve the skeletal muscle subclinically as well.  相似文献   
10.
Atrial fibrillation (AF) has been linked to increased inward rectifier potassium current, IK1, either due to AF-induced electrical remodelling, or from functional changes due to the Kir2.1 V93I mutation. The aim of this simulation study was to identify at cell and tissue levels' mechanisms by which increased IK1 facilitates and perpetuates AF. The Courtemanche et al. human atrial cell action potential (AP) model was modified to incorporate reported changes in IK1 induced by the Kir2.1 V93I mutation in both heterozygous (Het) and homozygous (Hom) mutant forms. The modified models for wild type (WT), Het and Hom conditions were incorporated into homogeneous 1D, 2D and 3D tissue models. Restitution curves of AP duration (APD), effective refractory period (ERP) and conduction velocity (CV) were computed and both the temporal and the spatial vulnerability of atrial tissue to re-entry were measured. The lifespan and tip meandering pattern of re-entry were also characterised. For comparison, parallel simulations were performed by incorporating into the Courtmanche et al. model a linear increase in maximal IK1 conductance. It was found that the gain-in-function of V93I ‘mutant’ IK1 led to abbreviated atrial APs and flattened APD, ERP and CV restitution curves. It also hyperpolarised atrial resting membrane potential and slowed down intra-atrial conduction. V93I ‘mutant’ IK1 reduced the tissue's temporal vulnerability but increased spatial vulnerability to initiate and sustain re-entry, resulting in an increased overall susceptibility of atrial tissue to arrhythmogenesis. In the 2D model, spiral waves self-terminated for WT (lifespan < 3.3 s) tissue, but persisted in Het and Hom tissues for the whole simulation period (lifespan > 10 s). The tip of the spiral wave meandered more in WT tissue than in Het and Hom tissues. Increased IK1 due to augmented maximal conductance produced similar results to those of Het and Hom Kir2.1 V93I mutant conditions. In the 3D model the dynamic behaviour of scroll waves was stabilized by increased IK1. In conclusion, increased IK1 current, either by the Kir2.1 V93I mutation or by augmented maximal conductance, increases atrial susceptibility to arrhythmia by increasing the lifespan of re-entrant spiral waves and the stability of scroll waves in 3D tissue, thereby facilitating initiation and maintenance of re-entrant circuits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号