首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   119篇
  国内免费   19篇
  2024年   8篇
  2023年   23篇
  2022年   21篇
  2021年   33篇
  2020年   30篇
  2019年   30篇
  2018年   34篇
  2017年   21篇
  2016年   21篇
  2015年   69篇
  2014年   107篇
  2013年   75篇
  2012年   54篇
  2011年   67篇
  2010年   76篇
  2009年   42篇
  2008年   44篇
  2007年   45篇
  2006年   42篇
  2005年   34篇
  2004年   36篇
  2003年   35篇
  2002年   23篇
  2001年   32篇
  2000年   28篇
  1999年   26篇
  1998年   16篇
  1997年   22篇
  1996年   23篇
  1995年   18篇
  1994年   11篇
  1993年   15篇
  1992年   17篇
  1991年   10篇
  1990年   14篇
  1989年   7篇
  1988年   4篇
  1987年   9篇
  1986年   8篇
  1985年   17篇
  1984年   9篇
  1983年   11篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   7篇
  1976年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有1306条查询结果,搜索用时 15 毫秒
1.
The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.  相似文献   
2.
3.
4.
A number of methods of construction of partially balanced incomplete block designs with nested rows and columns are developed and new balanced incomplete block designs with nested rows and columns are obtained as a by-product.  相似文献   
5.
Synopsis The filter feeding organ of cyprinid fishes is the branchial sieve, which consists of a mesh formed by gill rakers and tiny channels on the gill arches. In order to establish its possible role during growth we measured the following morphological gill raker parameters over a range of sizes in three cyprinid fishes, bream, white bream and roach: inter raker distance, bony raker length, raker width, cushion length and channel width. At any given standard length common bream has the largest inter raker distance, roach the lowest and white bream is intermediate. In the comb model of filter feeding the inter raker distance is considered to be a direct measure of the mesh size and retention ability (= minimal size of prey that can be retained) of a filter. For the three species under study there is a conflict between the comb model and experimental data on particle retention. Lammens et al. (1987) found that common bream has a large retention ability whereas roach and white bream have a much smaller one. A new model, the channel model (Hoogenboezem et al. 1991) has been developed for common bream; in this model the lateral gill rakers can regulate the mesh size of the medial channels on the other side of the gill slit. The present data indicate that this model is not appropriate for white bream and roach. At any given standard length white bream and roach only reach 70% of the raker length of common bream, which means that in this model the gill slits should to be very narrow during filter feeding. The gill rakers consist of a bony raker and a fleshy cushion. The bony rakers have a rather long needle-like part outside the cushion in bream, but not in white bream and roach which have blunt gill rakers. Blunt gill rakers are not suited to reduce the diameter of the medial channels. The comb model seems more appropriate for white bream and roach, but doubts about the validity of this simple model remain. The sum of the areas of the medial channels is an approximation of the area through which water flows in the filter. This channel area therefore gives an impression of the capacity or flow rate of the filter. With this capacity estimation and an estimation of energy consumption we calculated an energy ratio of filter feeding. The energy ratio decreases with increasing standard length with an exponent close to the expected exponent of -0.40. The energy ratio is highest in bream, intermediate in white bream and lowest in roach.  相似文献   
6.
Summary The gap junction morphology was quantified in freeze-fracture replicas prepared from rat auricles that had been either quickly frozen at 6 K or chemically fixed by glutaraldehyde, in a state of normal cell-to-cell conduction or in a state of electrical uncoupling. The general appearance of the gap junctions was similar after both preparative procedures. A quantitative analysis of three gap junctional dimensions provided the following measurements in the quickly frozen conducting auricles (mean±sd): (a) P-face particles' diameter 8.27±0.74 nm (n =5709), (b) P-face particles' center-to-center distance 10.78±2.12 nm (n=4800), and (c) E-face pits' distance 9.99±2.19 nm (n=1600). Corresponding values obtained from chemically fixed tissues were decreased by about 3% for the particle's diameter and about 5% for the particles' and pits' distances. Electrical uncoupling by the action of either 1 mM 2–4-dinitrophenol (DNP), or 3.5 mMn-Heptan-1-ol (heptanol), induced a decrease of the particle's diameter, which amounted to –0.69±0.01 nm (mean ±se) in the quickly frozen preparations and –0.71±0.01 nm in the chemically fixed ones. The particles' distance was decreased by –0.96±0.04 nm in the quickly frozen samples and by –0.90 ±0.03 nm in the chemically fixed ones and the E-face pits' distance was similarly reduced. All differences were statistically significant (P<0.001 for all dimensions). Electrical recoupling after the heptanol effect promoted a return of these gap junctional dimensions towards normal values, which was about 50% complete within 20 min. It is concluded that very similar morphological alterations of the gap junctional structure are induced in the mammalian heart by different treatments promoting electrical uncoupling and that these conformational changes appear independently of the preparative procedure. The suggestion that the observed decrease of the particles' diameter is genuinely related to the closing mechanism of the unit cell-to-cell channel set in thei centers is thus confirmed.  相似文献   
7.
Summary Two experiments were conducted simultaneously to determine (1) if fast-growing fingerlings of channel catfish, Ictalurus punctatus, could be identified by simple visual selection of body size and (2) if initial size advantages influenced subsequent growth and carcass traits of divergently selected channel catfish. Exp. 1 included large (L), medium (M), and small (S) fingerling sizes from each of the control (C), selected upward (+) and selected downward (–) lines for body weight. Exp. 2 included all fmgerlings of the same size (25±5 g) from the 3 lines. Catfish from the L size-class, within each full-sib family in each line, were consistently heavier and longer than M and S size-classes throughout the 53-week experimental period. Fingerlings from the M size-class were also superior in growth to those from the S size-class. Catfish from the + line exceeded those from the C and –lines in body weight and total length at the conclusion of Exp. 1 but not in Exp. 2. This was attributed to the selection of equal size fmgerlings in Exp. 2 which may have excluded fingerlings with the best growth potential from the + body weight line. Results of the two experiments combined indicated that one generation of divergent selection has created genetic differences among lines of channel catfish.Supported by State and Hatch funds allocated to the Georgia Agricultural Experiment Station  相似文献   
8.
9.
Ionic channels are discrete sites at which the passive movement of ions takes place during nervous excitation. Three types of channels are distinguished. 1. Leakage channels that are permanently open to various cations. 2. Na channels that open promptly on depolarization but slowly close again (inactivate) on sustained depolarization and that are predominantly permeable to Na+ ions. 3. K channels that on depolarization open after some delay but stay open and that are mainly passed by K+ ions. The selectivity sequence of the Na channels of the squid axon (or frog nerve) is as follows: Na+ ≈ Li+>(T1+)>NH+ 4?K+> Rb+, Cs+; that of K channels is: (T1+)>K+>Rb+>NH+ 4?Na+, Cs+, Na channels are selectively blocked by tetrodotoxin (TTX) or saxitoxin (STX), K channels by tetraethylammonium ions (TEA). Either channel type is reversibly blocked when one drug molecule binds to one site per channel, the equilibrium dissociation constant of these reactions being about 3×10?9 MTTX (or STX) and 4×10?4 M TEA, respectively. Because of their specificity and high affinity, TTX and STX are used to “titrate” the Na channels whose density appears to be of the order of 100/Μm2. The “gates” of the channels operate as a function of potential and time but independent of the permeating ion species. Drugs (e.g. veratridine) and enzymes (e.g. pronase, applied intraaxonally) cause profound changes in the gating function of the Na channels without influencing their selectivity. This points to separate structures for gating and ion discrimination. The latter is thought to be, in part, brought about by a “selectivity filter” of which detailed structural ideas exist. Recent experiments suggest that the gates of the Na channels are controlled by charged particles moving within the membrane under the influence of the electrical field.  相似文献   
10.
Summary The patch-clamp technique is used here to investigate the kinetics of Ca2+ block in single high-conductance Ca2+-activated K+ channels. These channels are detected in the membrane surounding cytoplasmic drops fromChara australis, a membrane which originates from the tonoplast of the parent cell. The amplitudes and durations of single channel events are measured over a wide range of membrane potential (–300 to 200 mV). Ca2+ on either side of the channel reduces its K+ conductance and alters its ion-gating characteristics in a voltage-dependent manner. This Ca2+-induced attenuation of conductance is analyzed using the theory of diffusion-limited ion flow through pores. Interaction of external Ca2+ with the channel's ion-gating mechanism is examined in terms of a kinetic model for ion-gating that includes two voltage-dependent gating mechanisms. The kinetics of channel block by external Ca2+ indicates that (i) external Ca2+ binds at two sites, a superficial site and a deep site, located at 8 and 40% along the trans-pore potential difference, (ii) the external vestibule cannot be occupied by more than one Ca2+ or K+, and (iii) the kinetics of Ca2+ binding at the deep site is coupled with that of a voltage-dependent gate on the external side of the channel. Kinetics of channel block by internal Ca2+ indicates that more than one Ca2+ is involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号