首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2020年   2篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2008年   3篇
  2006年   1篇
  2003年   1篇
  1999年   1篇
  1987年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Madagascar's endemic ground-dwelling leaf chameleons (Brookesiinae: Brookesia Gray, 1865 + Palleon Glaw, et al., Salamandra, 2013, 49, pp. 237–238) form the sister taxon to all other chameleons (i.e., the Chamaeleoninae). They possess a limited ability of color change, a rather dull coloration, and a nonprehensile tail assisting locomotion in the leaf litter on the forest floor. Most Brookesia species can readily be recognized by peculiar spiky dorsolateral projections (“Rückensäge”), which are caused by an aberrant vertebral structure and might function as body armor to prevent predation. In addition to a pronounced Rückensäge, the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) exhibits conspicuous, acuminate tubercle scales on the lateral flanks and extremities, thereby considerably enhancing the overall armored appearance. Such structures are exceptional within the Chamaeleonidae and despite an appreciable interest in the integument of chameleons in general, the morphology of these integumentary elements remains shrouded in mystery. Using various conventional and petrographic histological approaches combined with μCT-imaging, we reveal that the tubercle scales consist of osseous, multicusped cores that are embedded within the dermis. Based on this, they consequently can be interpreted as osteoderms, which to the best of our knowledge is the first record of such for the entire Chamaeleonidae and only the second one for the entire clade Iguania. The combination of certain aspects of tissue composition (especially the presence of large, interconnected, and marrow-filled cavities) together with the precise location within the dermis (being completely enveloped by the stratum superficiale), however, discriminate the osteoderms of B. perarmata from those known for all other lepidosaurs.  相似文献   
2.
Body dimensions of organisms can have a profound impact on their functional and structural properties. We examined the morphological proportions of the feeding apparatus of 105 chameleon specimens representing 23 species in seven genera, spanning a 1,000‐fold range in body mass to test whether the feeding apparatus conforms to the null hypotheses of geometric similarity that is based on the prevalence of geometric similarity in other ectothermic vertebrates. We used a phylogenetically corrected regression analysis based on a composite phylogenetic hypothesis to determine the interspecific scaling patterns of the feeding apparatus. We also determined the intraspecific (ontogenetic) scaling patterns for the feeding apparatus in three species. We found that both intraspecifically and interspecifically, the musculoskeletal components of the feeding apparatus scale isometrically among themselves, independent of body length. The feeding apparatus is thus of conserved proportions regardless of overall body length. In contrast, we found that the tongue apparatus as a whole and its musculoskeletal components scale with negative allometry with respect to snout‐vent length—smaller individuals have a proportionately larger feeding apparatus than larger individuals, both within and among species. Finally, the tongue apparatus as a whole scales with negative allometry with respect to body mass through ontogeny, but with isometry interspecifically. We suggest that the observed allometry may be maintained by natural selection because an enlarged feeding apparatus at small body size may maximize projection distance and the size of prey that smaller animals with higher mass‐specific metabolic rates can capture. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
4.
The southern African landscape appears to have experienced frequent shifts in vegetation associated with climatic change through the mid-Miocene and Plio-Pleistocene. One group whose historical biogeography may have been affected by these fluctuations are the dwarf chameleons (Bradypodion), due to their associations with distinct vegetation types. Thus, this group provides an opportunity to investigate historical biogeography in light of climatic fluctuations. A total of 138 dwarf chameleons from the Cape Floristic Region of South Africa were sequenced for two mitochondrial genes (ND2 and 16S), and resulting phylogenetic analyses showed two well-supported clades that are distributed allopatrically. Within clades, diversity among some lineages was low, and haplotype networks showed patterns of reticulate evolution and incomplete lineage sorting, suggesting relatively recent origins for some of these lineages. A dispersal-vicariance analysis and a relaxed Bayesian clock suggest that vicariance between the two main clades occurred in the mid-Miocene, and that both dispersal and vicariance have played a role in shaping present-day distributions. These analyses also suggest that the most recent series of lineage diversification events probably occurred within the last 3-6 million years. This suggests that the origins of many present-day lineages were founded in the Plio-Pleistocene, a time period that corresponds to the reduction of forests in the region and the establishment of the fynbos biome.  相似文献   
5.
Aim East Africa is one of the most biologically diverse regions, especially in terms of endemism and species richness. Hypotheses put forward to explain this high diversity invoke a role for forest refugia through: (1) accumulation of new species due to radiation within refugial habitats, or (2) retention of older palaeoendemic species in stable refugia. We tested these alternative hypotheses using data for a diverse genus of East African forest chameleons, Kinyongia. Location East Africa. Methods We constructed a dated phylogeny for Kinyongia using one nuclear and two mitochondrial markers. We identified areas of high phylogenetic diversity (PD) and evolutionary diversity (ED), and mapped ancestral areas to ascertain whether lineage diversification could best be explained by vicariance or dispersal. Results Vicariance best explains the present biogeographic patterns, with divergence between three major Kinyongia clades (Albertine Rift, southern Eastern Arc, northern Eastern Arc) in the early Miocene/Oligocene (> 20 Ma). Lineage diversification within these clades pre‐dates the Pliocene (> 6 Ma). These dates are much older than the Plio‐Pleistocene climatic shifts associated with cladogenesis in other East African taxa (e.g. birds), and instead point to a scenario whereby palaeoendemics are retained in refugia, rather than more recent radiations within refugia. Estimates of PD show that diversity was highest in the Uluguru, Nguru and East Usambara Mountains and several lineages (from Mount Kenya, South Pare and the Uluguru Mountains) stand out as being evolutionarily distinct as a result of isolation in forest refugia. PD was lower than expected by chance, suggesting that the phylogenetic signal is influenced by an unusually low number of extant lineages with long branch lengths, which is probably due to the retention of palaeoendemic lineages. Main conclusions The biogeographic patterns associated with Kinyongia are the result of long evolutionary histories in isolation. The phylogeny is dominated by ancient lineages whose origins date back to the early Miocene/Oligocene as a result of continental wide forest fragmentation and contraction due to long term climatic changes in Africa. The maintenance of palaeoendemic lineages in refugia has contributed substantially to the remarkably high biodiversity of East Africa.  相似文献   
6.
Abstract

The main distribution area of the Chameleon in Turkey is the Aegean and the Mediterranean regions, however, records are also available from the Marmara region and from southeast Anatolia.  相似文献   
7.
8.
9.
Madagascar and the Seychelles are Gondwanan remnants currently isolated in the Indian Ocean. In the Late Cretaceous, these islands were joined with India to form the Indigascar landmass, which itself then split into its three component parts around the start of the Tertiary. This history is reflected in the biota of the Seychelles, which appears to contain examples of both vicariance- and dispersal-mediated divergence from Malagasy or Indian sister taxa. One lineage for which this has been assumed but never thoroughly tested is the Seychellean tiger chameleon, a species assigned to the otherwise Madagascar-endemic genus Calumma. We present a multi-locus phylogenetic study of chameleons, and find that the Seychellean species is actually the sister taxon of a southern African clade and requires accomodation in its own genus as Archaius tigris. Divergence dating and biogeographic analyses indicate an origin by transoceanic dispersal from Africa to the Seychelles in the Eocene–Oligocene, providing, to our knowledge, the first such well-documented example and supporting novel palaeocurrent reconstructions.  相似文献   
10.
WE CONDUCTED A COMPREHENSIVE MOLECULAR PHYLOGENETIC STUDY FOR A GROUP OF CHAMELEONS FROM MADAGASCAR (CHAMAELEONIDAE: Calumma nasutum group, comprising seven nominal species) to examine the genetic and species diversity in this widespread genus. Based on DNA sequences of the mitochondrial gene (ND2) from 215 specimens, we reconstructed the phylogeny using a Bayesian approach. Our results show deep divergences among several unnamed mitochondrial lineages that are difficult to identify morphologically. We evaluated lineage diversification using a number of statistical phylogenetic methods (general mixed Yule-coalescent model; SpeciesIdentifier; net p-distances) to objectively delimit lineages that we here consider as operational taxonomic units (OTUs), and for which the taxonomic status remains largely unknown. In addition, we compared molecular and morphological differentiation in detail for one particularly diverse clade (the C. boettgeri complex) from northern Madagascar. To assess the species boundaries within this group we used an integrative taxonomic approach, combining evidence from two independent molecular markers (ND2 and CMOS), together with genital and other external morphological characters, and conclude that some of the newly discovered OTUs are separate species (confirmed candidate species, CCS), while others should best be considered as deep conspecific lineages (DCLs). Our analysis supports a total of 33 OTUs, of which seven correspond to described species, suggesting that the taxonomy of the C. nasutum group is in need of revision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号