首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  国内免费   12篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
The influence of temperature on the biochemical composition of eight species of marine phytoplankton was investigated. Thalassiosira pseudonana Hasle and Heim-dal, Phaeodactylum tricornutum Bohlin and, Pavlova lutheri Droop (three of eight species studied) had minimum values of carbon and nitrogen quotas at intermediate temperatures resulting in a broad U-shaped response in quotas over the temperature range of 10 to 25°C. Protein per cell also had minimum values at intermediate temperatures for six species. For T. pseudonana, P. tricornutum, and P. lutheri, patterns of variation in carbon, nitrogen, and protein quotas as a function of temperature were similar. Over all species, lipid and carbohydrate per cell showed no consistent trends with temperature. Only chlorophyll a quotas and the carbon: chlorophyll a ratios (θ) showed consistent trends across all species. Chlorophyll a quotas were always lower at 10°C than at 25°C. Carbon: chlorophyll a ratios (θ) were always higher at 10°C than at 25°C. We suggest that although θ consistently increases at lower temperatures, the relationship between temperature and θ ranges from linear to exponential and is species specific. Accordingly, the interspecific variance in θ that results from species showing a range of possible responses to temperature increases as temperature declines and reaches a maximum at low temperatures. High photon flux densities appear to increase the potential interspecific variance in the carbon: chlorophyll a ratio and therefore exacerbate these trends.  相似文献   
2.
The utilization of inorganic carbon by three species of marine diatom, Skeletonema costatum (Grev.) Cleve. Ditylum brightwellii (West) Grun., and Chaetoceros calcitrans Paulsen was investigated using an inorganic carbon isotopic disequilibnum technique and inorganic carbon dose-response curves. Stable carbon isotope data of the diatoms are also presented. Observed rates of photosynthetic oxygen evolution were greater than could be accounted for by the theoretical rate of CO2 supply from the uncatalyzed dehydration of HCO3? in the external medium, suggesting use of HCO3? as an inorganic carbon source. Data from the isotopic disequilibrium experiment demonstrate the use of both HCO3? and CO2 for photosynthesis. Carbon isotope discrimination values support the use of HCO3? by the diatoms.  相似文献   
3.
Morphology and molecular phylogeny constitute the structural elements of diatom taxonomy. These approaches do not, however, give information on the functioning of taxa. Additional methods to serve a more integrated and wide-ranging taxonomy have therefore been called for. Metabolic fingerprinting is one approach used within the field of metabolomics, often applied in classification of samples. Here we apply metabolic fingerprinting in a taxonomic study of a cryptic diatom species. Strains of the cosmopolitan diatom Chaetoceros socialis from two geographical areas; the north-east Atlantic and Arctic and the Gulf of Naples, were cultivated at three different temperatures; 2.5, 8 and 13°C. The strains from the two different geographical areas exhibited different growth rates as well as different photosynthetic efficiencies. Algal extracts, collected at the end of the growth experiments, were analysed by Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry. The two groups of strains were separated by principal component analysis of their metabolic fingerprints. Analysis of the data revealed both qualitative and quantitative differences in metabolite markers. These phenotypic differences reinforce differences also found for morphology, phylogenetic markers and growth rates, and point at different adaptive characteristics in organisms living under different temperature regimes.  相似文献   
4.
Iron starvation induced marked increases in flavodoxin abundance and decreases in light-saturated and light-limited photosynthesis rates in the diatom Chaetoceros muelleri. Consistent with the substitution of flavodoxin for ferredoxin as an early response to iron starvation, increases of flavodoxin abundance were observed before declines of cell division rate or chl a specific photosynthesis rates. Changes in the abundance of flavodoxin after the addition of iron to iron-starved cells indicated that flavodoxin was not actively degraded under iron-replete conditions. Greater declines in light-saturated oxygen evolution rates than dark oxygen consumption rates indicated that the mitochondrial electron transfer chain was not affected as greatly by iron starvation as the photosynthetic electron transfer chain. The carbon:nitrogen ratio was unaffected by iron starvation, suggesting that photosynthetic electron transfer was a primary target of iron starvation and that reductions in nitrate assimilation were due to energy limitation (the C:N ratio would be expected to rise under nitrogen-limited but energy-replete conditions). Parallel changes were observed in the maximum light-saturated photosynthesis rate and the light-limited initial slope of the photosynthesis-light curve during iron starvation and recovery. The lowest photosynthesis rates were observed in iron-starved cells and the highest values in iron-replete cells. The light saturation parameter, Ik, was not affected by iron starvation, nor was the chl-to-C ratio markedly reduced. These observations were consistent with iron starvation having a similar or greater effect on photochemical charge separation in PSII than on downstream electron transfer steps. Declines of the ratio of variable to maximum fluorescence in iron-starved cells were consistent with PSII being a primary target of iron starvation. The functional cross-section of PSII was affected only marginally (<20%) by iron starvation, with the largest values observed in iron-starved cells. The rate constant for electron transfer calculated from fast repetition rate fluorescence was found to covary with the light-saturated photosynthesis rate; it was lowest in the most severely starved cells.  相似文献   
5.
Continuous cultures of Chaetoceros muelleri and Isochrysis galbana were grown outdoors in flat plate-glass reactors in which light-path length (LPL) varied from 5 to 30 cm. High daily productivity (13 to 16 g cell mass per square meter of irradiated reactor surface) for long periods of time was obtained in reactors in which the optical path as well as cell density were optimized. 'Twenty centimeters was the optimal LPL, yielding the highest areal productivity of cell mass (g m–2d–1), eicosapentaenoic acid, and docosahexaenoic acid, which was identical with that previously found for polysaccharide production of Porphyridium and not far from the optimal LPL affecting maximal productivity in Nannochloropsis species. Relating the energy impinging on a given reactor surface area to the appropriate number of cells showed that the most efficient light dose per cell, obtained with the 20-cm LPL reactor, was approximately 2.5 times lower than the light dose available per cell in the 5-cm LPL reactor, in which a significant decline in areal cell density accompanied the lowest areal output of cell mass. The most effective harvesting regimen was in the range of 10% to 15% of culture volume harvested daily and replaced with fresh growth medium, resulting in a sustainable culture density of 24 × 106 and 28 × 106 cells/ml of C. muelleri and I. galbana, respectively.  相似文献   
6.
The toxic effects of copper on resting spore formation and viability in the marine diatom Chaetoceros protuberans Lauder were determined both with and without silicic acid added to the medium. With silicic acid available, partial inhibition of resting spore formation occurred only at the highest cupric ion activity (pCu 8.6), while the percentage of cells forming spores at pCu's 10.2 and 11.3 was nearly the same as in the controls. Without silicic acid added to the medium, sporulation was completely inhibited at pCu 8.6 and greatly inhibited, at pCu 10.2. At pCu 11.3 and in the controls, the rate of spore formation was less than 50%. The results indicate that the inhibition of resting spore formation by copper is related to the concentration of silicic acid available to cells of C protuberans. This is consistent with previous studies which show that copper toxicity during vegetative growth involves interference with silicification in diatoms and is a Junction of the silicic acid concentration of the medium. Viable resting spores of C. protuberans were still present in cultures following exposure to elevated copper concentrations during a 100-day incubation period. This indicates that resting spores can serve to enhance diatom survival in areas polluted by heavy metals.  相似文献   
7.
A method was established for the identification and quantification of indole-3-acetic acid (IAA) in extracts of the kelp Laminaria japonica. An IAA content of 90–95 μg kg−1 fresh weight in kelp extract was determined by high performance liquid chromatography (HPLC). IAA identification was based on a combination of co-chromatography and comparative chromatography with a standard, analysis of UV spectra, and atmospheric pressure electrospray mass spectrometry (APESI-MS). IAA was isolated by silica gel chromatography and HPLC. The effect on the growth of four marine microalgae of the pure IAA isolated from kelp extract was investigated. Exogenously added IAA from kelp enhanced the growth of Chlorella sp., Dunaliella salina and Porphyridium cruentum, but not that of Chaetoceros muelleri. IAA from kelp significantly inhibited the accumulation of soluble cellular proteins in Chlorella sp. and P. cruentum, and had a very significant effect on chlorophyll biosynthesis in Chlorella sp. However, there was no obvious effect of IAA on the regulation of biosynthesis of cellular polysaccharides in these four marine microalgae.  相似文献   
8.
A nuclear transformation system for the centric diatom Chaetoceros sp. has been established using two plasmids pTpfcp/nat and pTpNR/green fluorescent protein (GFP) that had been used for Thalassiosira pseudonana transformation. These contain the nourseothricin resistance gene (nat) with the fucoxanthin chlorophyll a/c binding protein (fcp) promoter/terminator from T. pseudonana and the enhanced green fluorescent protein gene (egfp), with the nitrate reductase (NR) promoter/terminator from T. pseudonana, respectively. Transformants were recovered in the presence of the antibiotic nourseothricin. One to four copies of both nat and egfp genes were integrated into genomic DNA of the transformants. Transformation efficiency was 1.5–6.0 transformants per 108 cells. This work is the first report of stable genetic transformation of Chaetoceros, which is important as not only a constituent member of marine ecosystem but also feed for aquaculture.  相似文献   
9.
Five taxa of Chaetoceros occur in inland waters of North America. These most commonly occur in waters with elevated total dissolved solids in arid regions of the western United States and Canada. Chaetoceros amanita Cleve-Euler is characterized by consistently forming relatively long chains of cells and having very spinose primary resting spore valves. Chaetoceros elmorei Boyer also forms long chains of cells which are connected by evident valvar processes; spores are nearly always smooth. Chaetoceros muelleri Lemm. may form short chains with processes between sibling valves, but also produces solitary cells lacking processes. Chaetoceros muelleri var. subsalsum (Lemm.)Johansen et Rushforth is similar to the nominate but never produces cells with Processes. Both of the C. muelleri varieties produce spores with smooth primary valves. Chaetoceros simplex Ostenfeld is characterized by a noncolonial habit, cells lacking processes and the production of resting spores with warty to some what spinose primary valves.  相似文献   
10.
Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号