首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2013年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
An ATP-dependent transport system is responsible for the cellular extrusion of cGMP. The objective of the present study was to determine the effect of Mg2+, ATP and other nucleotides (2'-dATP, GTP and ADP), exogenous ATPase modulators (such as metavanadate, ouabain, EGTA, NEM, bafilomycin A1 and oligomycin A) on the cGMP transport. The uptake of [3H]-cGMP (1 mu M) at 37 C was studied in inside-out vesicles from human erythrocytes. Magnesium caused a maximal activation between 5 and 10 mM and the optimal ATP concentration was 1.25 mM with K50-values of 0.3-0.5 mM. Among other nucleotides tested, 2'-dATP (K50 of 0.7 mM) was nearly as effective as ATP, whereas cGMP accumulated slowly in the presence of GTP. ADP and metavanadate (P-type ATPase inhibitor) showed to be competitive inhibitors with Ki values of 0.15 mM and 10 mu m, respectively. NEM (a sulphydryl agent) reduced the ATP-dependent uptake in a concentration-dependent manner with a Ki value of 10 mu M. Ouabain (Na+/K+-ATPase inhibitor) had no effect. Bafilomycin A1 (V- type ATPase inhibitor) and oligomycin (F-type ATPase inhibitor) were the most potent inhibitors with Ki values of 0.7 and 1.8 mu M, respectively. The present study suggests that the cellular cGMP extrusion is energized by an ATPase with a unique inhibitor profile, which clearly differentiates it from the other major classes of membrane-bound ATPases.  相似文献   
2.
Using NADPH-diaphorase staining as a marker for nitric oxide (NO) synthase and an antiserum against cyclic GMP, we recently reported the anatomical distribution of nitric oxide donor and target cells in the antennal lobe, the principal olfactory neuropile of the locust. The most striking NADPH-diaphorase activity in the olfactory pathway is concentrated in a cluster of intensely stained local interneurons innervating the glomeruli. After incubation of tissue in a nitric oxide donor and inhibition of phospodiesterase activity, neurons of this cluster expressed cyclic GMP-immunoreactivity in the cell body and neurites. Here we examine the importance of the arrangement of NO donor and target cells for information processing in the glomeruli. The cellular organization of the NO-cyclic GMP system in olfactory interneurons, and the dendritic branching pattern, suggest that nitric oxide may not only act as intercellular, but also as intracellular messenger molecule in the glomerular neuropile of the antennal lobe. <br>  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号