首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2472篇
  免费   301篇
  国内免费   56篇
  2829篇
  2024年   15篇
  2023年   49篇
  2022年   85篇
  2021年   108篇
  2020年   122篇
  2019年   130篇
  2018年   118篇
  2017年   79篇
  2016年   94篇
  2015年   83篇
  2014年   189篇
  2013年   171篇
  2012年   117篇
  2011年   149篇
  2010年   83篇
  2009年   100篇
  2008年   108篇
  2007年   104篇
  2006年   98篇
  2005年   83篇
  2004年   64篇
  2003年   39篇
  2002年   46篇
  2001年   40篇
  2000年   43篇
  1999年   32篇
  1998年   30篇
  1997年   36篇
  1996年   31篇
  1995年   30篇
  1994年   34篇
  1993年   38篇
  1992年   25篇
  1991年   16篇
  1990年   21篇
  1989年   25篇
  1988年   17篇
  1987年   18篇
  1986年   14篇
  1985年   26篇
  1984年   19篇
  1983年   17篇
  1982年   20篇
  1981年   17篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1973年   7篇
  1970年   6篇
排序方式: 共有2829条查询结果,搜索用时 0 毫秒
1.
The development of spinal cord supports (bony thickenings which extend into the vertebral canal of vertebrae) in primitive (Salamandrella keyserlingii) and derived (Lissotriton vulgaris) salamanders were described. The spinal cord supports develop as the protuberances of periostal bone of the neural arches in the anteroproximal part of the septal collagenous fibers which connect a transverse myoseptum with the notochord and spinal cord, in the septal bundle inside the vertebral canal. Spinal cord supports were also found in some teleostean (Salmo salar, Oncorhynchus mykiss) and dipnoan (Protopterus sp.) fishes. The absence of the spinal cord supports in vertebrates with cartilaginous vertebrae (lampreys, chondrichthyan, and chondrostean fishes) corresponds to the fact that the spinal cord supports are bone structures. The absence of the spinal cord supports in frogs correlates with the lack of the well developed septal bundles inside the vertebral canal. The spinal cord supports are, presumably, a synapomorphic character for salamanders which originated independently of those observed in teleostean and dipnoan fishes. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Abstract: N -Acetylsuccinimidylglutamate [(asu)NAAG], a cyclic form of the peptide N -acetylaspartylglutamate (NAAG) in which the aspartyl residue is linked to glutamate via the α- and β-carboxylates, was identified and quantified by HPLC in the murine and bovine CNS. In the rat, the highest concentrations of (asu)NAAG were detected in the spinal cord (1.83 ± 0.15 pmol/mg of wet tissue weight) and brainstem (1.16 ± 0.08 pmol/mg wet weight), whereas the levels were below the limit of detection in cerebellum, hippocampus, and cerebral cortex. (Asu)NAAG was also detected in significant amounts in the superior colliculus and lateral genicutale nucleus (1.17 ± 0.05 and 0.82 ± 0.13 pmol/mg wet weight, respectively). Although the tissue content of (asu)NAAG was about three orders of magnitude lower than that of NAAG, levels of both peptides were positively correlated among different CNS regions ( r = 0.74, p < 0.003). In the rat spinal cord, (asu)NAAG levels progressively increased from week 2 to month 12 after birth. In bovine spinal cord, the contents of (asu)NAAG and NAAG were comparable in gray and white matter as well as in the dorsal and ventral horns. These results suggest that NAAG and (asu)-NAAG are closely related metabolically and raise the question of the physiological significance of such a cyclic peptide.  相似文献   
3.
4.
A review of negative split-sample cervical cytology cases revealed five cases reported as chronic follicular cervicitis. These cases showed characteristic morphological features in conventional smears with lymphoid cells, plasma cells and tingible body macrophages smeared across the slides. This contrasts with the presentation of ThinPrep samples (Cytic Corporation, Boxburgh, MA, USA), where cells were observed aggregated in clumps. The different presentation noted in liquid-based samples may require careful microscopic evaluation at high-power magnification.  相似文献   
5.
Summary Transection of the sciatic nerve in Rhesus monkeys and the consequent transganglionic degenerative atrophy (TDA) of central terminals of primary afferents result in transneuronal degeneration of substantia gelatinosa (SG) cells. Severe degeneration is characterized by an increased electron density of the nucleus and by conspicuous shrinkage of the cytoplasm, mitochondrial swelling, dilation of cisterns of the rough-surfaced endoplasmic reticulum, accumulation of free ribosomes and an electron-dense material in the cytoplasm. In the mild form, dilation of cisternal elements of the endoplasmic reticulum, swollen mitochondria and accumulation of free ribosomes takes place. About 10% of SG cells in segment L5 undergo the severe form whereas the rest shows signs of the mild form. Cytoplasmic alterations that occur during transneuronal degeneration seem to start at the level of subsurface cisterns. Dendrites and axons of transneuronally degenerating SG cells also show a conspicuous electron density. By analyzing the synaptic relationships of such darkened dendrites, connections in the upper dorsal horn can be deciphered. Modular units of the primary nociceptive analyzer that evaluate noxious and innocuous inputs on the basis of thin versus thick (AC/A) afferent activity and subjecting them to descending control appear to be recruited from structurally dispersed elements of synaptic glomeruli. These are arranged alongside dendritic processes of large antenna cells which relay impulses to projection cells of the spinothalamic tract.  相似文献   
6.
俞昌喜  王庆平 《生理学报》1990,42(4):331-339
本文应用受体阻断、高效液相,6-OHDA 化学损毁神经末梢和放射自显影等多学科技术方法,探讨脊髓苯环立啶受体的心血管效应与去甲肾上腺素能神经系统的关系。结果表明,哌唑嗪、育亨宾均可对抗 ith PCP 的降压和减慢心率作用,ith PCP 产生降压和减慢心率作用时,脊髓脑脊液内 MHPG 的含量升高;用6-OHDA 损毁脊髓 NA 能神经末梢后,ith PCP的降压和减慢心率作用大为减弱,脊髓 PCP 受体密度亦同时大为降低。可以认为,脊髓内有 PCP 受体分布于 NA 能神经末梢上,促进 NA 释放或抑制 NA 重摄取,可能是脊髓 PCP 受体产生心血管抑制效应的重要机理。  相似文献   
7.
Phenyl di-n-pentylphosphinate is a reasonably stable easily synthesized inhibitor of neuropathy target esterase (NTE) with low anticholinesterase activity. Like phenylmethylsulphonyl fluoride it protects hens against neuropathic effects of compounds such as diisopropylphosphorofluoridate. At intervals up to 15 days after dosing hens (10 mg/kg s.c. to inhibit 90% NTE) assays were made of catalytically active and of phosphinylated NTE in autopsy tissue. The sum of these components was always within the range of catalytic activity in undosed controls. However, the half-life of reappearance of active NTE was 2.07 days +/- 0.13 (SD, n = 6) for brain and 3.62 days +/- 0.23 (SD, n = 6) for spinal cord--shorter than after dosing with phenylmethylsulphonyl fluoride. It is proposed that: (1) The physiological turnover mechanism cannot distinguish between catalytically active and di-n-pentylphosphinylated NTE although initiation of organophosphate-induced delayed polyneuropathy might involve recognition of aged di-alkyl-phosphorylated NTE as "foreign". (2) The short half-lives indicate a slow spontaneous dephosphinylation of inhibited NTE occurs in vivo as well as de novo synthesis. The difference in half-lives for brain and spinal cord NTE may be due to different rates of synthesis de novo or (more likely) to different rates of spontaneous reactivation of the inhibited NTE in the two tissues.  相似文献   
8.
The present study used microdialysis techniques in an intact rabbit model to measure the release of amino acids within the lumbar spinal cord in response to transcranial electrical stimulation. Dialysis samples from the extracellular space were obtained over a stimulation period of 90 minutes and were examined using high pressure liquid chromatography. Neuronal excitation was verified by recerding corticomotor evoked potentials (CMEPs) from the spinal cord. A significant increase in the release of glycine and taurine compared to sham animals was measured after 90 minutes of transcranial stimulation. Glutamate and aspartate release was not significantly elevated. GABA concentrations were consistently low. CMEP components repeatedly showed adequate activation of descending fiber pathways and segmental interneuron pools during dialysis sampling. Since glycine, and to a lesser extent taurine, have been shown to inhibit motor neuron activity and are closely associated with segmental interneuron pools, suprasegmental modulation of motor activity may be, in part, through these inhibitory amino acid neurotransmitters in the rabbit lumbar spinal cord.  相似文献   
9.
Material in rat spinal cord extracts that reacts with antibodies to the molluscan tetrapeptide FMRF amide (Phe-Met-Arg-Phe-NH2) has been characterized by HPLC and radioimmunoassay using region specific antibodies. An antibody to the N-terminally extended analogue, Tyr-Gly-Gly-Phe-Met-Arg-Phe-NH2 (YGGFMRF amide), did not react with the rat material. Two antibodies to FMRF amide were characterized that differed markedly in their affinities for analogues with substitutions in the second and third positions from the C-terminus; both required the C-terminal amide, and neither showed appreciable sensitivity to substitutions in the fourth position from the C-terminus. With both antibodies the relative potency of the avian brain peptide, LPLRF amide, was about 0.1. Both antibodies revealed similar concentrations of immunoreactive material in rat spinal cord extracts. On reversed-phase HPLC using Techsil C18 and Spherisorb-phenyl columns, two peaks were separated that could be distinguished in retention times from FMRF amide, Leu-Pro-Leu-Arg-Phe-NH2 (LPLRF amide), and YGGFMRF amide. The results suggest that the rat spinal cord peptides are structurally related to the C-terminal tripeptide of FMRF amide and are probably extended at the N-terminus by sequences immunochemically distinct from other known peptides.  相似文献   
10.
Arginine vasopressin (AVP) has been localized in numerous extrahypothalamic brain regions and in the spinal cord. The results of intracerebroventricular AVP injections and microinjection of AVP into the brain stem suggest that this peptide, acting centrally at higher levels, may influence cardiovascular function. No function for the AVP occurring at spinal levels has been reported. In this study we report that AVP, in picomole quantities, increased arterial blood pressure and integrated heart rate in a dose-dependent manner following intrathecal application to the thoracic region in the rat. This response was not blocked by intravenous administration of the AVP antagonist d(CH2)5-d-Tyr-VAVP. These results suggest that AVP, acting within the spinal cord, may alter neural outflow regulating blood pressure and heart rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号