首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2011年   1篇
  2010年   1篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
5.
We report sequences for nuclear lamins from the teleost fish Danio and six invertebrates. These include two cnidarians (Hydra and Tealia), one priapulid, two echinoderms, and the cephalochordate Branchiostoma. Combining these results with earlier data on Drosophila, Caenorhabditis elegans, and various vertebrates, the following conclusions on lamin evolution can be drawn. First, all invertebrate lamins resemble in size the vertebrate B-type lamin. Second, all lamins described previously for amphibia, birds and mammals as well as the first lamin of a fish, characterized here, show a cluster of 7 to 12 acidic residues in the tail domain. Since this acidic cluster is absent from all invertebrate lamins including that of the cephalochordate Branchiostoma, it was acquired with the vertebrate lineage. The larger A-type lamin of differentiated cells must have arisen subsequently by gene duplication and insertion of an extra exon. This extra exon of the vertebrate A-lamins is the only major change in domain organization in metazoan lamin evolution. Third, the three introns of the Hydra and Priapulus genes correspond in position to the last three introns of vertebrate B-type lamin genes. Thus the entirely different gene organization of the C. elegans and Drosophila Dmo genes seems to reflect evolutionary drift, which probably also accounts for the fact that C. elegans has the most diverse lamin sequence. Finally we discuss the possibility that two lamin types, a constitutively expressed one and a developmentally regulated one, arose independently on the arthropod and vertebrate lineages. Received: 4 February 1999 / Accepted: 1 April 1999  相似文献   
6.
We isolated a full-length cDNA clone of amphioxus AmphiNk2-tin, an NK2 gene similar in sequence to vertebrate NK2 cardiac genes, suggesting a potentially similar function to Drosophila tinman and to vertebrate NK2 cardiac genes during heart development. During the neurula stage of amphioxus, AmphiNk2-tin is expressed first within the foregut endoderm, then transiently in muscle precursor cells in the somites, and finally in some mesoderm cells of the visceral peritoneum arranged in an approximately midventral row running beneath the midgut and hindgut. The peritoneal cells that express AmphiNk2-tin are evidently precursors of the myocardium of the heart, which subsequently becomes morphologically detectable ventral to the gut. The amphioxus heart is a rostrocaudally extended tube consisting entirely of myocardial cells (at both the larval and adult stages); there are no chambers, valves, endocardium, epicardium, or other differentiated features of vertebrate hearts. Phylogenetic analysis of the AmphiNk2-tin sequence documents its close relationship to vertebrate NK2 class cardiac genes, and ancillary evidence suggests a relationship with the Drosophila NK2 gene tinman. Apparently, an amphioxus-like heart, and the developmental program directing its development, was the foundation upon which the vertebrate heart evolved by progressive modular innovations at the genetic and morphological levels of organization.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号