首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   8篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
Summary Transformation of Saccharomyces cerevisiae with several yeast CEN4 ARS1 plasmids containing the his3-4 allele (as well as the URA3 and TRP1 markers) yielded His+ transformants at 0.1%–50% the frequency of Ura+ Trp+ transformants. Additional His+ derivatives arose on continuous growth of transformants originally scored as His- Ura+ Trp+. In all cases, the His+ phenotype was not due to plasmid or host mutations but invariably correlated with an up to 12-fold increase in plasmid copy number. On removal of selective pressure, the His+ phenotype was lost more readily than the Ura+ Trp+ markers, with a corresponding decrease in plasmid copy number. Also, the amplification did not decrease the mitotic loss rate of the Ura+ Trp+ markers. These results indicate that CEN ARS plasmids can be spontaneously amplified to higher levels than previously observed. However, when amplified, apparently not all copies exhibit the characteristic stability of CEN ARS plasmids.  相似文献   
2.
Summary The recombination fraction between the interstitially located gene an and interchange 303 of rye was found to be 0.244±0.038 in a test cross using the translocation as the male parent. In first metaphase translocation configurations in pollen mother cells of the same plant, the chiasma frequency between an and the translocation breakpoint was found to be significantly more than twice the recombination fraction. Recombination was concluded to be masked by a difference in the alternate frequency between configurations without interstitial chiasmata and configurations with interstitial chiasmata, the effect of the first type being of major importance. Random centromere orientation of translocation multivalents with interstitial chiasmata was concluded to be a realistic assumption. The exceptionally high recombination between an and translocation 303 is discussed. Consideration is also given to the use of interchanges in the establishment of a marker's chromosomal position, and to the use of translocation chromosomes in balanced systems for hybrid breeding purposes.  相似文献   
3.
Summary Rye secalins, telomeric C-bands, and telocentric chromosomes were used as markers in the progeny of a test-cross in order to determine the position of seed storage-protein genes Glu-R1 and Gli-R1 with respect to the centromere and both telomeres of chromosome 1 R in rye. These genes were linked to the centromere (32.35±3.28% and 36.27±3.37% recombination, respectively). Glu-R1 was loosely linked to the telomere of the long arm (43.63±3.47% recombination), while Gli-R1 was closely linked to the telomere of the short arm (9.80±2.08% recombination). This finding supports the possibility that rye - and -secalin genes may be located on the satellites, as has been described in wheat for genes that code similar proteins. The importance of metaphase-I pairing failure and its consequences for the estimation of the recombination fraction are also discussed.  相似文献   
4.
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.  相似文献   
5.
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.  相似文献   
6.
CENP-B, a highly conserved centromere-associated protein, binds to -satellite DNA, the centromeric satellite of primate chromosomes, at a 17-bp sequence, the CENP-B box. By fluorescence in situ hybridization (FISH) with an oligomer specific for the CENP-B box sequence, we have demonstrated the abundance of CENP-B boxes on all chromosomes (except the Y) of humans, chimpanzee, pygmy chimpanzee, gorilla, and orangutan. This sequence motif was not detected in the genomes of other primates, including gibbons, Old and New World monkeys, and prosimians. Our results indicate that the CENP-B box containing subtype of -satellite DNA may have emerged recently in the evolution of the large-bodied hominoids, after divergence of the phylogenetic lines leading to gibbons and apes; the box is thus on the order of 15–25 million years of age. The rapid process of dispersal and fixation of the CENP-B box sequence throughout the human and great ape genomes is thought to be a consequence of concerted evolution of -satellite subsets on both homologous and nonhomologous chromosomes.Correspondence to: T. Haaf  相似文献   
7.
Using a laser confocal microscope, chromatin arrangements in intact interphase nuclei were investigated in four plant species. Chromosomes in these plants have specific segments that can be stained with the fluorescent dye chromomycin A3 (CMA). We stained centromeres inHordeum vulgare, sub-telomeric regions inSecale cereale, satellites inChrysanthemum multicore, and the satellites and the short arms of chromosomes with satellites inHemerocallis middendorfii. The following points were shown: (1) In mitotic interphase nuclei, the centromere and the telomeres of both arms touched the nuclear membrane and had evident polarity. Some CMA-bodies in sub-telomeric regions do not contact the nuclear membrane. (2) Differentiated nuclei had a non-random construction. Polarity of chromosomes is maintained, however, the chromosomes are far apart from the nuclear membrane. (3) Associations in sub-telomeric regions in the interphase nuclei ofSecale cereale were probably due to the association of heterochromatic regions with identical repeated sequences rather than telomere associlations. (4) In interphase nuclei ofChrysanthemum multicore, satellites fused during interphase.  相似文献   
8.
A PstI DNA family was isolated from the genome of a lacertid, Lacerta graeca. The 185-bp monomeric unit (pGPS) was cloned and hybridized to DNAs and chromosomes of several lacertid species. The data showed that pGPS hybridizes to the (1) centromeric or pericentromeric heterochromatin of almost all the chromosomes of L. graeca and (2) genomic DNA of species phylogenetically related and unrelated to L. graeca. The presence of pGPS even in species immunologically apart more than 30 million years suggests that this repeated family might be either very ancient or have been conserved during evolution due to its functional role. The latter hypothesis might be supported by the results of sequence analysis which showed some homology with both several alphoid sequences of primates and the CDEIII centromeric sequence of yeast. Segments of the satellite sequence are similar to the mammalian CENP-B box. These observations suggest that pGPS might have a role in determining the centromeric function in lacertid lizards. Received: 6 February 1997 / Accepted: 14 May 1997  相似文献   
9.
A fine physical map of the rice (Oryza sativa spp. Japonica var. Nipponbare) chromosome 5 with bacterial artificial chromosome (BAC) and PI-derived artificial chromosome (PAC) clones was constructed through integration of 280 sequenced BAC/PAC clones and 232 sequence tagged site/expressed sequence tag markers with the use of fingerprinted contig data of the Nipponbare genome. This map consists of five contigs covering 99% of the estimated chromosome size (30.08 Mb). The four physical gaps were estimated at 30 and 20 kb for gaps 1–3 and gap 4, respectively. We have submitted 42.2-Mb sequences with 29.8 Mb of nonoverlapping sequences to public databases. BAC clones corresponding to telomere and centromere regions were confirmed by BAC-fluorescence in situ hybridization (FISH) on a pachytene chromosome. The genetically centromeric region at 54.6 cM was covered by a minimum tiling path spanning 2.1 Mb with no physical gaps. The precise position of the centromere was revealed by using three overlapping BAC/PACs for ~150 kb. In addition, FISH results revealed uneven chromatin condensation around the centromeric region at the pachytene stage. This map is of use for positional cloning and further characterization of the rice functional genomics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Chia-Hsiung Cheng and Mei-Chu Chung have equal contributions.  相似文献   
10.
The centromere is an essential structure in the chromosomes of all eukariotes and is central to the mechanism that ensures proper segregation during mitosis and meiosis. The comparison of DNA sequence motifs, organization and kinetocore components from yeast to man is beginning to indicate that, although centromeres are highly variable DNA elements, a conserved pattern of sequence arrangement and function is emerging. We have identified and characterized the first satellite DNA (P.k.SAT) from microbat species Pipistrellus kuhli. The presence of mammalian CENP-B box and yeast CDEIII box could indicate the participation of P.k.SAT in centromere organization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号