首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   9篇
  国内免费   2篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   9篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   12篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有125条查询结果,搜索用时 265 毫秒
1.
We determined the species diversity, blood‐feeding behavior, and host preference of Anopheles mosquitoes in two malaria endemic areas of Tak (Mae Sot District) and Mae Hong Son (Sop Moei District) Provinces, located along the Thai border with Myanmar, during a consecutive two‐year period. Anopheline mosquitoes were collected using indoor and outdoor human‐landing captures and outdoor cow‐baited collections. Mosquitoes were initially identified using morphological characters, followed by the appropriate multiplex AS‐PCR assay for the identification of sibling species within Anopheles (Cellia) complexes and groups present. Real‐time PCR was performed for parasite‐specific detection in mosquitoes (Plasmodium spp. and Wuchereria bancrofti). A total of 7,129 Anopheles females were captured, 3,939 from Mae Sot and 3,190 from Sop Moei, with 58.6% and 37% of all anophelines identified as An. minimus, respectively. All three malaria vector complexes were detected in both areas. One species within the Minimus Complex (An. minimus) was present along with two related species in the Funestus Group, (An. aconitus, An. varuna), two species within the Dirus Complex (An. dirus, An. baimaii), and four species within the Maculatus Group (An. maculatus, An. sawadwongporni, An. pseudowillmori, and An. dravidicus). The trophic behavior of An. minimus, An. dirus, An. baimaii, An. maculatus, and An. sawadwongporni are described herein. The highest An. minimus densities were detected from February through April of both years. One specimen of An. minimus from Mae Sot was found positive for Plasmodium vivax.  相似文献   
2.
Populations of feral horses (Equus ferus caballus) in the western United States have increased during the past decade, consequently affecting co-occurring wildlife habitat. Feral horses may influence 2 native wildlife species, greater sage-grouse (Centrocercus urophasianus; sage-grouse) and pronghorn (Antilocapra americana) through mechanisms of habitat alteration and competition. Wyoming, USA, contains the largest populations of pronghorn and sage-grouse of any state and also has the highest degree of range overlap between feral horses and these species. Consequently, the effects that horses may have on pronghorn and sage-grouse populations in Wyoming have implications at local, state, and population-wide levels. Managers need information concerning habitat selection and space use overlap among these species to develop appropriate management strategies; yet this information is absent for most feral horse management areas. To address this knowledge need, we attached global positioning system (GPS) transmitters to horses, pronghorn, and sage-grouse within the greater Bureau of Land Management–Adobe Town Herd Management Area in southern Wyoming and northern Colorado, USA, between 2017 and 2021 to evaluate habitat selection and space use of all species during 3 biologically relevant seasons: spring (Apr–Jun; sage-grouse breeding, nesting, and early-brood rearing; pronghorn late gestation and early parturition), summer (Jul–Oct; sage-grouse summer and late-brood rearing; pronghorn late parturition and breeding), and winter (Nov–Mar; non-breeding season). Feral horses selected flatter slopes and shorter mean shrub height across all seasons and were closer to water in spring and summer. Pronghorn habitat selection was similar to horses, but they also avoided oil and gas well pads year-round. During spring, sage-grouse selected greater herbaceous cover, flatter slopes, and areas farther from well pads. In summer, sage-grouse selected greater mean shrub height, flatter slopes, and were closer to water. In winter, sage-grouse selected flatter slopes and areas with greater vegetation production during the preceding summer. Our results indicate strong year-round overlap in space use between horses and pronghorn, whereas overlap between horses and sage-grouse is greatest during the summer in this region. Consequently, managers should recognize the potential for horses to influence habitat quality of pronghorn and sage-grouse in the region.  相似文献   
3.
Sage-grouse (Centrocercus spp.) are influencing rapidly evolving land management policy in the western United States. Management objectives for fine-scale vegetation characteristics (e.g., grass height >18 cm) have been adopted by land management agencies based on resource selection or relationships with fitness proxies reported among numerous habitat studies. Some managers, however, have questioned the appropriateness of these objectives. Moreover, it remains untested whether habitat–fitness relationships documented at fine scales (i.e., among individual nests within a study area) also apply at scales of management units (e.g., pastures or grazing allotments), which are many orders of magnitude larger. We employed meta-analyses of studies published from 1991 to 2019 to help resolve the role of fine-scale vegetation structure in nest site selection and nest success across the geographic range of greater sage-grouse (C. urophasianus) and evaluate the validity of established habitat management objectives. Specifically, we incorporated effects of study design and functional responses to resource availability in meta-regression models linking vegetation structure to nest site selection, and used a novel meta-analytic approach to simultaneously model vegetation structure and its relationship to nest success. Our approach tested habitat relationships at a range-wide extent and a grain size closely matching scales at which agencies make management decisions. We found moderate, but context-dependent, effects of shrub characteristics and weak effects of herbaceous vegetation on nest site selection. None of the tested vegetation characteristics were related to variation in nest success, suggesting nesting habitat–fitness relationships have been inappropriately extrapolated in developing range-wide habitat management objectives. Our findings reveal surprising flexibility in habitat use for a species often depicted as having very particular fine-scale habitat requirements, and cast doubt on the practice of adopting precise management objectives for vegetation structure based on findings of individual small-scale field studies. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   
4.
Habitat loss is the most prevalent threat to biodiversity in North America. One of the most threatened landscapes in the United States is the sagebrush (Artemisia spp.) ecosystem, much of which has been fragmented or converted to non‐native grasslands via the cheatgrass‐fire cycle. Like many sagebrush obligates, greater sage‐grouse (Centrocercus urophasianus) depend upon sagebrush for food and cover and are affected by changes to this ecosystem. We investigated habitat selection by 28 male greater sage‐grouse during each of 3 years after a 113,000‐ha wildfire in a sagebrush steppe ecosystem in Idaho and Oregon. During the study period, seeding and herbicide treatments were applied for habitat restoration. We evaluated sage‐grouse responses to vegetation and post‐fire restoration treatments. Throughout the 3 years post‐fire, sage‐grouse avoided areas with high exotic annual grass cover but selected strongly for recovering sagebrush and moderately strongly for perennial grasses. By the third year post‐fire, they preferred high‐density sagebrush, especially in winter when sagebrush is the primary component of the sage‐grouse diet. Sage‐grouse preferred forb habitat immediately post‐fire, especially in summer, but this selection preference was less strong in later years. They also selected areas that were intensively treated with herbicide and seeded with sagebrush, grasses, and forbs, although these responses varied with time since treatment. Wildfire can have severe consequences for sagebrush‐obligate species due to loss of large sagebrush plants used for food and for protection from predators and thermal extremes. Our results show that management efforts, including herbicide application and seeding of plants, directed at controlling exotic annual grasses after a wildfire can positively affect habitat selection by sage‐grouse.  相似文献   
5.
A broad range of perspectives exists regarding the interpretation of potentially adverse ecological changes in ecological risk assessments conducted under Superfund and RCRA. While USEPA's Proposed Guidelines for Ecological Risk Assessment recommend determining whether predicted changes are adverse based on the nature of effects, intensity of effects, spatial scale, temporal scale, and potential for recovery, the guidelines do not provide specific stan dards for judging adversity. Hence, implementation of the proposed guide lines varies with each risk manager's subjective judgments regarding the relative importance of each of these five criteria. In an effort to increase consistency in the scientific interpretation of ecological risk assessments, the following practices are recommended. First, measures of effects should focus on levels of ecological organization that are more complex than the individual organ ism. Second, multiple lines of evidence should be evaluated for each assessment endpoint. Third, bioequivalence testing should be used in place of traditional statistical testing (e.g., Student t-test) because the goal of bioequivalence testing is to answer the biologically relevant question of whether measurements differ by, at most, a biologically small amount. Fourth, in defining biologically small differences, site-specific and species specific conditions should be considered to the greatest extent possible. Fifth, where the outcomes of multiple lines of evidence contradict one another, the risk assessor should employ a quantitative approach to weighing the evidence based on the scientific defensibility of each measure of effect.  相似文献   
6.
Abstract: Loss of quality brood rearing habitat, resulting in reduced chick growth and poor recruitment, is one mechanism associated with decline of greater sage-grouse (Centrocercus urophasianus) populations. Low chick survival rates are typically attributed to poor-quality brood rearing habitat. Models that delineate suitability of sage-grouse nesting or brood rearing habitat at the landscape scale can provide key insights into the relationship between sage-grouse and the environment, allowing managers to identify and prioritize habitats for protection or restoration. We used Southwest Regional Gap landcover types to identify early and late greater sage-grouse brood rearing in east-central Nevada. We conducted an Ecological Niche Factor Analysis to 1) examine the effect these landcover types and other ecogeographical variables have on sage-grouse selection of brood rearing habitat, and 2) generate landscape-scale suitability maps. We also evaluated if incorporating a fitness component (brood survival) in landscape spatial analyses of habitat quality influenced our assessment of habitat suitability. Because 36% of our 6,500-km2 study area was identified as early brood rearing habitat, we believe this habitat may not be limiting greater sage-grouse populations in east-central Nevada, USA, at least in wet years. We found strong selection for particular landcover types (e.g., higher elevation, moist sites with riparian shrubs or montane sagebrush) during late brood rearing. Late brood rearing habitat on which broods were successfully reared represented only 2.8% of the study area and had a restricted distribution, suggesting the potential that such habitat could limit sage-grouse populations in east-central Nevada.  相似文献   
7.
Abstract: Considering habitat selection at multiple scales is essential to fully understand habitat requirements and management needs for wildlife species of concern. We used a hierarchical information-theoretic approach and variance decomposition techniques to analyze habitat selection using local-scale habitat variables measured in the field and landscape-scale variables derived with a Geographic Information System (GIS) for nesting greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB), Montana and Wyoming, USA, 2003–2007. We investigated relationships between habitat features that can and cannot be mapped in a GIS to provide insights into interpretation of landscape-scale—only GIS models. We produced models of habitat selection at both local and landscape scales and across scales, yet multiscale models had overwhelming statistical and biological support. Variance decomposition showed that local-scale measures explained the most pure variation (50%) in sage-grouse nesting-habitat selection. Landscape-scale features explained 20% of pure variation and shared 30% with local-scale features. Both local- and landscape-scale habitat features are important in sage-grouse nesting-habitat selection because each scale explained both pure and shared variation. Our landscape-scale model was accurate in predicting priority landscapes where sage-grouse nests would occur and is, therefore, useful in providing landscape context for management decisions. It accurately predicted locations of independent sage-grouse nests (validation R2 = 0.99) and showed good discriminatory ability with >90% of nests located within only 40% of the study area. Our landscape-scale model also accurately predicted independent lek locations. We estimated twice the amount of predicted nesting habitat within 3 km of leks compared to random locations in the PRB. Likewise we estimated 1.8 times more predicted nesting habitat within 10 km of leks compared to random locations. These results support predictions of the hotspot theory of lek placement. Local-scale habitat variables that cannot currently be mapped in a GIS strongly influence sage-grouse nest-site selection, but only within priority nesting habitats defined at the landscape scale. Our results indicate that habitat treatments for nesting sage-grouse applied in areas with an unsuitable landscape context are unlikely to achieve desired conservation results.  相似文献   
8.
ABSTRACT Modification of landscapes due to energy development may alter both habitat use and vital rates of sensitive wildlife species. Greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, have experienced rapid, widespread changes to their habitat due to recent coal-bed natural gas (CBNG) development. We analyzed lek-count, habitat, and infrastructure data to assess how CBNG development and other landscape features influenced trends in the numbers of male sage-grouse observed and persistence of leks in the PRB. From 2001 to 2005, the number of males observed on leks in CBNG fields declined more rapidly than leks outside of CBNG. Of leks active in 1997 or later, only 38% of 26 leks in CBNG fields remained active by 2004–2005, compared to 84% of 250 leks outside CBNG fields. By 2005, leks in CBNG fields had 46% fewer males per active lek than leks outside of CBNG. Persistence of 110 leks was positively influenced by the proportion of sagebrush habitat within 6.4 km of the lek. After controlling for habitat, we found support for negative effects of CBNG development within 0.8 km and 3.2 km of the lek and for a time lag between CBNG development and lek disappearance. Current lease stipulations that prohibit development within 0.4 km of sage-grouse leks on federal lands are inadequate to ensure lek persistence and may result in impacts to breeding populations over larger areas. Seasonal restrictions on drilling and construction do not address impacts caused by loss of sagebrush and incursion of infrastructure that can affect populations over long periods of time. Regulatory agencies may need to increase spatial restrictions on development, industry may need to rapidly implement more effective mitigation measures, or both, to reduce impacts of CBNG development on sage-grouse populations in the PRB.  相似文献   
9.
Ecologists often estimate population trends of animals in time series of counts using linear regression to estimate parameters in a linear transformation of multiplicative growth models, where logarithms of rates of change in counts in time intervals are used as response variables. We present quantile regression estimates for the median (0.50) and interquartile (0.25, 0.75) relationships as an alternative to mean regression estimates for common density-dependent and density-independent population growth models. We demonstrate that the quantile regression estimates are more robust to outliers and require fewer distributional assumptions than conventional mean regression estimates and can provide information on heterogeneous rates of change ignored by mean regression. We provide quantile regression trend estimates for 2 populations of greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, and for the Crawford population of Gunnison sage-grouse (Centrocercus minimus) in southwestern Colorado, USA. Our selected Gompertz models of density dependence for both populations of greater sage-grouse had smaller negative estimates of density-dependence terms and less variation in corresponding predicted growth rates (λ) for quantile than mean regression models. In contrast, our selected Gompertz models of density dependence with piecewise linear effects of years for the Crawford population of Gunnison sage-grouse had predicted changes in λ across years from quantile regressions that varied more than those from mean regression because of heterogeneity in estimated λs that were both less and greater than mean estimates. Our results add to literature establishing that quantile regression provides better behaved estimates than mean regression when there are outlying growth rates, including those induced by adjustments for zeros in the time series of counts. The 0.25 and 0.75 quantiles bracketing the median provide robust estimates of population changes (λ) for the central 50% of time series data and provide a 50% prediction interval for a single new prediction without making parametric distributional assumptions or assuming homogeneous λs. Compared to mean estimates, our quantile regression trend estimates for greater sage-grouse indicated less variation in density-dependent λs by minimizing sensitivity to outlying values, and for Gunnison sage-grouse indicated greater variation in density-dependent λs associated with heterogeneity among quantiles.  相似文献   
10.
Remote cameras are a common method for surveying wildlife and recently have been promoted for implementing large‐scale regional biodiversity monitoring programs. The use of camera‐trap data depends on the correct identification of animals captured in the photographs, yet misidentification rates can be high, especially when morphologically similar species co‐occur, and this can lead to faulty inferences and hinder conservation efforts. Correct identification is dependent on diagnosable taxonomic characters, photograph quality, and the experience and training of the observer. However, keys rooted in taxonomy are rarely used for the identification of camera‐trap images and error rates are rarely assessed, even when morphologically similar species are present in the study area. We tested a method for ensuring high identification accuracy using two sympatric and morphologically similar chipmunk (Neotamias) species as a case study. We hypothesized that the identification accuracy would improve with use of the identification key and with observer training, resulting in higher levels of observer confidence and higher levels of agreement among observers. We developed an identification key and tested identification accuracy based on photographs of verified museum specimens. Our results supported predictions for each of these hypotheses. In addition, we validated the method in the field by comparing remote‐camera data with live‐trapping data. We recommend use of these methods to evaluate error rates and to exclude ambiguous records in camera‐trap datasets. We urge that ensuring correct and scientifically defensible species identifications is incumbent on researchers and should be incorporated into the camera‐trap workflow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号