首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2113篇
  免费   103篇
  国内免费   368篇
  2024年   7篇
  2023年   26篇
  2022年   45篇
  2021年   47篇
  2020年   60篇
  2019年   51篇
  2018年   70篇
  2017年   54篇
  2016年   65篇
  2015年   56篇
  2014年   86篇
  2013年   121篇
  2012年   101篇
  2011年   125篇
  2010年   80篇
  2009年   133篇
  2008年   102篇
  2007年   114篇
  2006年   108篇
  2005年   71篇
  2004年   74篇
  2003年   65篇
  2002年   81篇
  2001年   62篇
  2000年   46篇
  1999年   45篇
  1998年   50篇
  1997年   34篇
  1996年   42篇
  1995年   41篇
  1994年   50篇
  1993年   48篇
  1992年   45篇
  1991年   35篇
  1990年   32篇
  1989年   26篇
  1988年   28篇
  1987年   24篇
  1986年   23篇
  1985年   41篇
  1984年   36篇
  1983年   23篇
  1982年   36篇
  1981年   22篇
  1980年   17篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1976年   4篇
  1975年   3篇
排序方式: 共有2584条查询结果,搜索用时 15 毫秒
1.
2.
Over 80% of the values of approximate digestibility (AD), efficiency of conversion of assimilated food to biomass (ECD) and efficiency of conversion of ingested food (ECI) calculated using energy terms are greater than the corresponding dry weight (DW) values, based on data for over 65 species (38 studies; number of comparative values: AD=139, ECD=128 and ECI=169). Largest positive differences (energy > DW values) are 30 (AD, ECD) and 24 (ECI) percentage points and largest negative differences (energy < DW values) are 9 (AD), 11 (ECD) and 8 (ECI) percentage points. These differences generally are least for ECI (71% of the differences fall between 0 and +5 percentage points), and AD (68%), followed by ECD (only 47% fall between 0 and +5), and they may vary with temperature, food and other factors. The differences tend to increase (esp. for ECD and ECI) when comparing later with earlier instars. Energy > DW efficiency values are commonly expected for AD because of the generally greater energy content of food than feces, and for ECD and ECI because of the generally greater energy content of insect biomass than ingested and assimilated food. Deviations from predicted differences in surveyed literature data are discussed in terms of possible methodological sources of error.
Résumé Plus de 80% des valeurs de la digestibilité approchée (AD), de l'efficacité de la conversion de la nourriture assimilée en biomasse (ECD) et de l'efficacité de la conversion de l'aliment ingéré (ECI), calculées en termes énergétiques, et obtenus à partir de données sur 65 espèces, sont supérieures aux valeurs des poids secs correspondants (DW): 38 études; valeurs comparatives: AD=139, ECD=128, ECI=169. Les plus importantes différences positive (énergie>valuers DW) sont de 30 (AD, ECD) et de 24 (ECI) centièmes (les différences négatives les plus fortes = 9 (AD), 11 (ECD) et 8 (ECI); ces différences sont moindres pour ECI (71% des différences tombent à 0 et +5 centièmes), et AD (68%), suivi de ECD (seulement 47% tombent entre 0 et +5). Ces différences peuvent varier avec la température, l'alimentation et d'autres facteurs; les différences tendent à croître (particulièrement pour ECD et ECI) quant on les compare plus tard avec des stades plus précoces. Energie > aux valeurs d'efficacité DW sont généralement attendues pour AD par suite du contenu énergétique supérieur de l'aliment à celui des excréments, et pour ECD et ECI par suite du contenu énergétique généralement plus élevé pour la biomasse de l'insecte que pour l'aliment ingéré et assimilé. Les écarts par rapport aux différences prédites dans les données de la littérature examinée sont analysées en considérant les sources possibles d'erreurs méthodologiques.
  相似文献   
3.
Cellulolytic bacteria became established 12 days after birth in the caecum and colon of conventionally-reared mice fed a diet containing 5 p. 100 crude cellulose (Weende). Their population reached a level between 10(6) and 10(7) bacteria per gram of digestive contents in 25-day-old animals. However, variations between animals were very large; 20 to 50% of the individuals were free of cellulolytic bacteria. A low cellulolytic population was observed in adult mice fed a cellulose-free diet. The amount of cellulose in the diet and its nature (crude or pure cellulose) affected the number of cellulolytic bacteria: the higher the percentage of cellulose in the diet, the higher the number of cellulolytic bacteria, in particular with crude cellulose-containing diet.  相似文献   
4.
R. D. Preston 《Planta》1988,174(1):67-74
A brief review is given of the changing views over the years, as knowledge of wall structure has developed, concerning the mechanism whereby cellulose chains may be oriented. This leads to an examination of current concepts, particularly those concerning microtubules. It is shown that none of the mechanisms suggested whereby microtubules might cause orientation of cellulose microfibrils is consistent with the known range of molecular architectures found in plant cell walls. It is further concluded that any mechanism which necessitates an indissoluble link between the plasmalemma and the cellulose-synthesising complex at the tip of a microfibril is unacceptable. A new proposal is presented in which it is speculated that both microtubules and microfibrils are oriented by a mechanism separate from both. It is shown that if two vectors are contemplated, one parallel to cell length and one at right angles, and a sensor exists on the plasmalemma surface which responds to changes in the vectors, then all known wall structures may be explained. The possible nature of the vectors and the sensor are considered.  相似文献   
5.
Summary Acetobacter xylinum contains a complex system of plasmid DNA molecules. Plasmids of molecular weights or copy numbers different from the original wild-type, are found in different types of mutants. Restriction endonuclease digestion and DNA/DNA hybridization analysis, showed that the plasmids often contained partly, but not completely the same DNA sequences. Two of these plasmid classes were analysed in more detail, and could be shown to differ in size by about 5 kb. Hybridization analysis using cloned DNA fragments as probes, showed that sequences lacking in the smallest plasmid were still present in a DNA fraction co-migrating with linearized chromosomal DNA. In addition, at least part of the DNA in the smallest plasmid was present both in the plasmid and chromosomal DNA fraction. Analysis of a particular strain containing an insertion of transposon Tn1, also indicated the existence of complex interactions between plasmids and chromosomal DNA. Together with experiments on conjugative transfer and curing of the plasmids, the results indicate that at least part of the genetic system of A. xylinum is unusual when compared to that of other genetically characterized bacteria.  相似文献   
6.
Summary The localization and orientation of cytoskeletal elements in developing cotton fibres were studied by the indirect immunofluorescence and the dry cleaving technique. Microtubules are transversely arranged to the cell axis, most probably in a flat helix, in the cortex of expanding fibres. Since the innermost deposited cellulose microfibrils always show primarily the same orientation it is postulated that the microtubules control the transverse deposition of the cellulose fibrils. Little further cell expansion takes place during secondary wall formation and the microfibril pattern corresponds to that of the cortical microtubules,e.g., in the steepness of their helicoidal turns. Microtubules with a length of 7–20 m were observed, probably they are longer. The importance of microtubule length on microfibril deposition is discussed. The density of microtubule packing is in the range of 8–14 m-1 as in other comparable cell types. In contrast to the microtubules, actin filaments are most likely longitudinally oriented during different phases of fibre development. The dry cleaving technique reveals numerous coated pits in the plasma membrane which are not crossed by microtubules. They seem to be linked to the latter by filamentous structures.  相似文献   
7.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   
8.
When growing on a mixture of ammonia and l-glutamate as nitrogen sources, Rhizobium leguminosarum biovar trifolii MNF1000 utilizes ammonia exclusively, while cowpea Rhizobium MNF2030 utilizes both compounds at similar rates. l-Glutamate transport in both strain MNF1000 and MNF2030 is active, giving rise to a 60-fold concentration gradient across the membrane of cells of strain MNF2030. Both strains produce two kinetically distinguishable glutamate transport systems under all conditions of growth — a high affinity system with an apparent K m of 0.06–0.17 M but of relatively low V max, and a low affinity system with a K m of 1.2–6.7\ M, but of higher overall capacity. l-Glutamate transport activity in cells of MNF2030 was relatively insensitive to the presence of ammonia in the growth medium. By contrast, ammonia in the growth medium resulted in low activities of glutamate transport in cells of MNF1000 which were provided with a carbon source, offering one explanation for the failure of this strain to use glutamate in the presence of ammonia. However, in cells of MNF1000 growing on glutamate as sole source of carbon and nitrogen, the glutamate transport system is synthesized, even in the presence of accumulated or added ammonia. This suggests that the regulation of the glutamate permease also depends on availability of carbon source.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   
9.
Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads   总被引:13,自引:0,他引:13  
Abstract 3-Chlorobiphenyl-degrading bacteria were obtained from the mating between Pseudomonas putida strain BN10 and Pseudomonas sp. strain B13. Strains such as BN210 resulted from the transfer of the genes coding the enzyme sequence for the degradation of chlorocatechols from B13 into BN10, whereas B13 derivatives such as B131 have acquired the biphenyl degradation sequence from BN10. During growth of the hybrid strains on 3-chlorobiphenyl 90% chloride was released. Activities of phenylcatechol 2,3-dioxygenase, benzoate dioxygenase, catechol 1,2-dioxygenase, chloromuconate cyloisomerase and 4-carboxymethyl-enebut-2-en-4-olide hydrolase were found in 3-chlorobiphenyl-grown cells. The hybrid strains were found to convert some congeners of the Aroclor 1221 mixture such as mono- and dichloro-substituted biphenyls.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号