首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18816篇
  免费   618篇
  国内免费   303篇
  2023年   190篇
  2022年   160篇
  2021年   249篇
  2020年   319篇
  2019年   351篇
  2018年   332篇
  2017年   289篇
  2016年   317篇
  2015年   542篇
  2014年   1347篇
  2013年   1276篇
  2012年   1158篇
  2011年   1433篇
  2010年   1114篇
  2009年   781篇
  2008年   827篇
  2007年   833篇
  2006年   759篇
  2005年   625篇
  2004年   641篇
  2003年   502篇
  2002年   357篇
  2001年   252篇
  2000年   262篇
  1999年   323篇
  1998年   298篇
  1997年   263篇
  1996年   260篇
  1995年   278篇
  1994年   304篇
  1993年   209篇
  1992年   264篇
  1991年   218篇
  1990年   186篇
  1989年   208篇
  1988年   195篇
  1987年   183篇
  1986年   165篇
  1985年   164篇
  1984年   197篇
  1983年   108篇
  1982年   169篇
  1981年   141篇
  1980年   144篇
  1979年   135篇
  1978年   94篇
  1977年   99篇
  1976年   61篇
  1974年   28篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
Community persistence in Broadstone Stream (U.K.) over three decades   总被引:1,自引:0,他引:1  
1. Few detailed long-term data sets exist for fresh waters with which to examine large-scale temporal changes in community composition. Consequently, insight into community persistence has been restricted to a few, contingent case studies. We collated and analysed data for the aquatic macroinvertebrate community of Broadstone Stream in south-east England, spanning three decades. The pH of this naturally acid stream has risen progressively since the 1970s, and we sought to examine the potential effects of this environmental change upon the community.
2. Persistence within Broadstone was high when compared with other systems that have been analysed using similar methods. The stream was characterised by a `core' community of eight taxa that were always present, and contributed 75–97% of total invertebrate abundance, with a trailing limb of progressively rarer and more acid-sensitive taxa. There was little species turnover, although the time-series exceeded 20 generations for most species.
3. Despite this high persistence, a long-term response to rising pH was detected: species indicating profound acidity (identified a priori from independent studies) have declined since the 1970s, whereas indicators of moderate acidity increased. The structure of the community food web has also changed since the 1970s, with increased predator diversity and abundance, and a lengthening of food chains following the invasion of a new top predator.
4. These changes in the community appeared to be driven by an interaction between pH and climate. The unusually hot, dry summers characteristic of the 1990s may have raised pH during the more sensitive (i.e. early) stages of the life-cycle, and thus provided a window of opportunity for less acid-tolerant taxa to colonise and become established. Changes in pH appeared to set the boundaries of the available local species pool, within which biotic interactions ultimately shaped the community.  相似文献   
2.
Ola Broberg 《Hydrobiologia》1987,150(1):11-24
The acidified lakes Lake Gårdsjön and Lake Stora Hästevatten the reference lake have been monitored since 1979 and 1980 respectively. The lakes are situated in SW Sweden; in an area severly affected by acid deposition. Lake Gårdsjön was limed in spring 1982. This paper analyses changes in nutrient concentrations upon liming of Lake Gårdsjön. The liming of Lake Gårdsjön was followed by a slight increase in ammonium, nitrate, and dissolved organic nitrogen concentrations. A drastic decrease occurred in particulate nitrogen and particulate carbon, whereas dissolved organic carbon increased. Total phosphorus and particulate phosphorus concentrations were similar to pre-limed conditions. The long-term decrease in phosphorus concentration, exhibited by the reference lake, was not identified in Lake Gårdsjön after liming, but total phosphorus concentration was still less than half compared to Lake Gårdsjön in the early 1970's. Additional measures such as phosphorus fertilization, should in certain cases be considered in addition to liming if the goal is to restore lakes to their pre-acidic conditions.  相似文献   
3.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
4.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
5.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
6.
7.
8.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
9.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3. Received: 17 October 1996 / Accepted: 19 November 1996  相似文献   
10.
Cells employ pro-survival and pro-adaptive pathways to cope with different forms of environmental stress. When stress is excessive, and the damage caused by it is unsustainable, cells engage pro-death pathways, which are in place to protect the host from the deleterious effects of harmed cells. Two important pathways that determine the balance between survival and death of stressed cells are the integrated stress response (ISR) and the mammalian target of rapamycin (mTOR), both of which converge at the level of mRNA translation. The two pathways have established avenues of communication to control their activity and determine the fate of stressed cells in a context-dependent manner. The functional interplay between the ISR and mTOR may have significant ramifications in the development and treatment of human diseases such as diabetes, neurodegeneration and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号