首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18479篇
  免费   561篇
  国内免费   493篇
  2023年   269篇
  2022年   199篇
  2021年   322篇
  2020年   335篇
  2019年   442篇
  2018年   385篇
  2017年   318篇
  2016年   339篇
  2015年   510篇
  2014年   1328篇
  2013年   1557篇
  2012年   1172篇
  2011年   1458篇
  2010年   1149篇
  2009年   760篇
  2008年   810篇
  2007年   845篇
  2006年   744篇
  2005年   632篇
  2004年   627篇
  2003年   488篇
  2002年   337篇
  2001年   213篇
  2000年   220篇
  1999年   295篇
  1998年   269篇
  1997年   229篇
  1996年   226篇
  1995年   225篇
  1994年   245篇
  1993年   181篇
  1992年   221篇
  1991年   175篇
  1990年   153篇
  1989年   165篇
  1988年   160篇
  1987年   146篇
  1986年   129篇
  1985年   130篇
  1984年   157篇
  1983年   93篇
  1982年   156篇
  1981年   117篇
  1980年   133篇
  1979年   127篇
  1978年   80篇
  1977年   87篇
  1976年   51篇
  1972年   24篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   
2.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
3.
Three varieties of Arachis hypogeae, GG 11, GG 20 and GG 24, were compared for resistance against A. niger. GG 20 showed the least disease severity. Infection with A. niger resulted in a rapid increase in NADPH oxidase, Glutathione reductase (GR) and salicylic acid in all the three varieties, indicating hyper increase of reactive oxygen species (ROS) and activation of phenyl propanoid pathway. Ferric reducing antioxidant power value was found to be decreasing due to infection in all the three varieties, confirming the role of ROS in pathogenesis. Since A. niger was found to cause pathogenesis by oxidative stress, the treatment of zinc was given as an antioxidant and its effect was studied. The application of zinc inhibited NADPH oxidase and GR activity in the control as well as in the infected GG 11 and GG 24 varieties but induced in the tolerant variety GG 20. Because zinc treatment could control the ROS in GG 11 and GG 24 varieties, disease severity was reduced but in GG 20 variety, zinc treatment aggravated ROS levels and also the disease severity. The protein profile of GG 20 in comparison to GG 11 and GG 24 varieties revealed one oligomeric protein of 110 kD as one of the responsible factors for its resistance. Total oil and its iodine value were found little higher in GG 20 variety than in other two varieties. It was found that the control of ROS could control the A. niger infection in Arachis hypogeae.  相似文献   
4.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
5.
6.
The use of rosemary essential oil (RO) and its combination with nisin (RO+N) in preventing the multiplication of Alicyclobacillus acidoterrestris in orange juice was evaluated. The minimum inhibitory and bactericidal concentrations (MIC and MBC) for RO were both 125 μg ml−1 while RO+N displayed a synergistic effect. The use of RO and RO+N at concentrations of 1, 4 and 8× MIC in orange juice for 96 h was evaluated in terms of their sporicidal effectiveness. With regard to the action against A. acidoterrestris spores, RO at 8× MIC was sporostatic, whereas RO+N at 1× MIC was sporicidal. Morphological changes in the structure of the micro-organism after treatment were also observed by microscopy. Furthermore, flow cytometric analysis showed that most cells were damaged or killed after treatment. In general, the antioxidant activity after addition of RO+N decreased with time. The results demonstrate that using the combination of RO and nisin can prevent the A. acidoterrestris growth in orange juice.  相似文献   
7.
8.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
9.
The cdc6 mutants of Schizosaccharomyces pombe have been classified as being defective in progression through the G2 phase of the cell cycle. We cloned an S. pombe gene that could complement the temperature-sensitive growth of the cdc6-23 mutant. Unexpectedly, the cloned gene was allelic to pol3, which encodes the catalytic subunit of DNA polymerase δ. Integration mapping confirmed that cdc6 and pol3 are identical. The cdc6-23 mutant carries one amino acid substitution in the conserved N3 region of Pol3. Received: 17 October 1996 / Accepted: 19 November 1996  相似文献   
10.
Cells employ pro-survival and pro-adaptive pathways to cope with different forms of environmental stress. When stress is excessive, and the damage caused by it is unsustainable, cells engage pro-death pathways, which are in place to protect the host from the deleterious effects of harmed cells. Two important pathways that determine the balance between survival and death of stressed cells are the integrated stress response (ISR) and the mammalian target of rapamycin (mTOR), both of which converge at the level of mRNA translation. The two pathways have established avenues of communication to control their activity and determine the fate of stressed cells in a context-dependent manner. The functional interplay between the ISR and mTOR may have significant ramifications in the development and treatment of human diseases such as diabetes, neurodegeneration and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号