首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Summary The Catecholaminergic innervation of neurons containing growth hormone-releasing factor (GRF) was examined by use of a method which combined either 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline with immunocytochemistry for GRF in the same tissue sections at the electron-microscopic level. In the ventrolateral part of the arcuate nucleus of the rat hypothalamus a large number of immunonegative axon terminals were found to make synaptic contact with GRF-like immunoreactive (GRF-LI) cell bodies and processes. 3H-noradrenaline autoradiography or 5-OHDA-labeling combined with GRF immunocytochemistry revealed that axon terminals labeled with 3H-noradrenaline or 5-OHDA make synaptic contact with the GRF-LI nerve cell bodies and processes. These findings indicate that catecholamine-containing neurons innervate GRF neurons to regulate GRF secretion via synapses in the rat arcuate nucleus.  相似文献   
2.
Although the cerebrospinal fluid-contacting neurons of the avian paraventricular organ exhibit considerable amounts of catecholamines, they show no tyrosine hydroxylase immunoreactivity. In the quail embryo, the development of these neurons has been studied using the paraformaldeyde-glutaraldeyde method for the fluorescence-histochemical localization of catecholamines. The timing of the appearance of catecholamine fluorescence in cerebrospinal fluid-contacting neurons and that in catecholamine-containing neurons of the brainstem have been compared. The first neurons displaying catecholamine fluorescence are found within the locus coeruleus and the nucleus subcoeruleus ventralis on the 5.5th day of incubation. Catecholaminergic neuronal groups of the medulla and mesencephalon can be identified by embryonic day 7, and fluorescent cerebrospinal fluid-contacting neurons of the hypothalamic paraventricular organ can be first recognized at the 8th day of incubation. If the catecholamine content of cerebrospinal fluid-contacting neurons that lack tyrosine hydroxylase depends upon an uptake mechanism, it may be significant that, in fluorescence-histochemical preparations, these neurons can be identified 1–3 days later than those in which catecholamines are synthesized and from which catecholamines are released at an earlier developmental stage. Moreover, cerebrospinal fluid-contacting neurons that have previously been shown to be tyrosine-hydroxylase immunoreactive, and that lie at the spinal-medullary junction display a different developmental pattern. By fluorescence histochemistry, they can be detected only by embryonic day 10.5. The chemical, developmental and topographical differences suggest that the catecholamine-containing cerebrospinal fluid-contacting elements of the paraventricular organ and those of the spinal cord represent two different subsets of cerebrospinal fluid-contacting neurons whose respective functional roles remain to be investigated.  相似文献   
3.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50 = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.  相似文献   
4.
5.
The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation–contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé  相似文献   
6.
Ryanodine receptor channelopathies   总被引:6,自引:0,他引:6  
Ryanodine receptors (RyR) are the Ca2+ release channels of sarcoplasmic reticulum that provide the majority of the [Ca2+] necessary to induce contraction of cardiac and skeletal muscle cells. In their cellular environment, RyRs are exquisitely regulated by a variety of cytosolic factors and accessory proteins so that their output signal (Ca2+) induces cell contraction without igniting signaling pathways that eventually lead to contractile dysfunction or pathological cellular remodeling. Here we review how dysfunction of RyRs, most commonly expressed as enhanced Ca2+ release at rest (skeletal muscle) or during diastole (cardiac muscle), appears to be the fundamental mechanism underlying several genetic or acquired syndromes. In skeletal muscle, malignant hyperthermia and central core disease result from point mutations in RYR1, the skeletal isoform of RyRs. In cardiac muscle, RYR2 mutations lead to catecholaminergic polymorphic ventricular tachycardia and other cardiac arrhythmias. Lastly, an altered phosphorylation of the RyR2 protein may be involved in some forms of congestive heart failure.  相似文献   
7.
Under optimised conditions for intoxication, botulinum neurotoxin type A was shown to inhibit approximately 90% of Ca2+-dependent K+-evoked release of [3H]acetylcholine, [3H]noradrenaline, and [3H]dopamine from rat cerebrocortical synaptosomes; cholinergic terminals were most susceptible. In each case, the dose-response curve for the neurotoxin was extended, with about 50% of evoked release being inhibited at approximately 10 nM whereas 200 nM was required for the maximal blockade. This may suggest some heterogeneity in the release process. The action of the toxin was time and temperature dependent and appeared to involve binding and sequestration steps prior to blockade of release. The neurotoxin failed to exert any effect on synaptosomal integrity or on Ca2+-independent release of the transmitters tested; it produced only minimal changes in neurotransmitter uptake although small secondary effects were detected with cholinergic terminals. Blockade by the neurotoxin of Ca2+-dependent resting release of transmitter was apparent; Sr2+, Ba2+, or high concentrations of Ca2+ restored the resting release of 3H-catecholamine but not [3H]acetylcholine. Interestingly, none of the latter conditions or 4-aminopyridine could reverse the toxin-induced blockade of evoked release. This lack of specificity in its action on synaptosomes, and other published findings, lead to the conclusion that toxin-sensitive component(s) exist in all nerve terminals that are concerned with transmitter release.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号