首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有24条查询结果,搜索用时 78 毫秒
1.
Abstract

Seventy phytosociological relevés were performed in 1 m × 1 m plots at 14 study sites spread along sandy shores in northern and southern Sardinia (Italy). The plots were selected in different habitat types (open dunes, native Juniperus woodlands, maquis, and plantations with Acacia, Eucalyptus and Pinus) according to a stratified sampling method in order to investigate impacts deriving from different levels of Carpobrotus spp. cover, dry litter from exotic trees, and other disturbance types. The quantile regression and logistic regression analyses revealed that the reduction in the amount of bryophyte and lichen cover on sand dunes of the study area is caused either by a high cover of Carpobrotus spp. mats or by a high cover of dry exotic litter in dense, unmanaged or poorly managed forest plantations. Additional detrimental effects are often driven by other kinds of man‐made disturbances. Forest management in the coastal areas of Sardinia should be gradually modified to take into account the conservation of bryophytes and lichens. Some of the biological indicators used are quite widespread in the Mediterranean coastal habitats or are exclusively associated with sand dunes; therefore, they can also be conveniently used as indicators of biological impacts in other countries or islands of the same biogeographical region.  相似文献   
2.
Questions: On sandy coastal habitats, factors related to substrate and to wind action vary along the sea–inland ecotone, forming a marked directional disturbance and stress gradient. Further, input of propagules of alien plant species associated to touristic exploitation and development is intense. This has contributed to establishment and spread of aliens in coastal systems. Records of alien species in databases of such heterogeneous landscapes remain scarce, posing a challenge for statistical modelling. We address this issue and attempt to shed light on the role of environmental stress/disturbance gradients and propagule pressure on invasibility of plant communities in these typical model systems. Location: Sandy coasts of Lazio (Central Italy). Methods: We proposed an innovative methodology to deal with low prevalence of alien occurrence in a data set and high cost of field‐based sampling by taking advantage, through predictive modelling, of the strong interrelation between vegetation and abiotic features in coastal dunes. We fitted generalized additive models to analyse (1) overall patterns of alien occurrence and spread and (2) specific patterns of the most common alien species recorded. Conclusion: Even in the presence of strong propagule pressure, variation in local abiotic conditions can explain differences in invasibility within a local environment, and intermediate levels of natural disturbance and stress offer the best conditions for spread of alien species. However, in our model system, propagule pressure is actually the main determinant of alien species occurrence and spread. We demonstrated that extending the information of environmental features measured in a subsample of vegetation plots through predictive modelling allows complex questions in invasion biology to be addressed without requiring disproportionate funding and sampling effort.  相似文献   
3.
Aims Although biological invasions occur throughout the world, and some invaders are widespread in many habitats, few studies on the ecological impact of invaders have examined multiple sites. We tested how the impact of three widespread plant invaders changed depending on the identity of the species and the invaded island. We also tested whether relative species loss was lower in species‐rich communities than in species‐poor ones. Location We conducted floristic surveys and soil analyses in eight Mediterranean Basin islands: Crete and Lesbos (Greece), Sardinia (Italy), Corsica, Bagaud and Porquerolles (France), and Mallorca and Menorca (Spain). Methods We compared native species richness and diversity, proportion of life forms, soil percentage nitrogen, percentage organic carbon, C/N, and soil pH in nearby paired plots of 2 × 2 m: one control and one invaded by either the deciduous tree Ailanthus altissima, the succulent subshrubs Carpobrotus spp. or the annual geophyte Oxalis pes‐caprae, across eight Mediterranean Basin islands. Results On average, the presence of invaders reduced species diversity, Carpobrotus spp. exhibiting the largest impact and Oxalis the least. However, the relative impact was island‐dependent, and was positively but weakly associated with the species richness of the recipient community. Therophytes were the life form that experienced the largest decrease across islands. The effects of invasion on soil properties were very variable. Total N changed (increased) only in plots invaded by Ailanthus, significantly decreasing the C/N ratio. The presence of this tree increased soil pH, whereas the opposite was found in plots invaded by the other two species. Organic C increased in plots invaded by Ailanthus and Carpobrotus species. Main conclusions By conducting an analysis at multiple sites, we found that the three plant invaders had an impact on plant community structure not entirely concordant with changes in soil properties. The impacts depended on the identity of the species and of the invaded island, suggesting that impact of invaders is context‐specific. The impact in terms of species loss was not lower in species‐rich than in species‐poor communities.  相似文献   
4.
Germination, growth, and physiological responses of hybridizing Carpobrotus from coastal California to soil salinity were studied. Hybrids are presumably the result of hybridization and introgression between the exotic Carpobrotus edulis, a succulent perennial invading coastal habitats, and the native or long-naturalized C. chilensis. Germination responses were investigated at 0, 10, 20, and 50% seawater. Seedling growth and physiology were compared by irrigating seedlings with solutions of the same seawater concentrations and in low and high nutrients. Germination was inhibited in the presence of salt, but recovered after transferring the seeds to fresh water. Seeds exposed to salt had higher final germination rates than control. Growth of Carpobrotus was slightly enhanced by low seawater concentrations but reduced at high salinity at both nutrient regimes. Leaf cell sap osmolarity increased with increasing soil salinity, and taxa did not differ significantly in this physiological adjustment. Leaf carbon isotope ratios (∂13C) ranged from −28 to −22‰ and became less negative at higher salinities, indicating an improved water use efficiency in the seedlings at high salt concentrations. In addition, ∂13C values were generally less negative at high than at low nutrients. Differences among taxa were generally small. The results show that salinity affects both establishment and growth of hybridizing Carpobrotus. The overall weak species differences in salt tolerance indicate that the exotic C. edulis can occupy the same sites as C. chilensis in terms of salinity. The similarity of hybrids in their response to salinity suggests that they may contribute to the invasion by Carpobrotus.  相似文献   
5.
Since the success of an invasive species depends not only upon its intrinsic traits but also on particular characteristics of the recipient habitat, assessing the performance of an invader across habitats provides a more realistic analysis of risk. Such an analysis will not only provide insights into the traits related to invasiveness, but also the habitat characteristics that underpin vulnerability to invasion that, taken together, will facilitate the selection of management strategies to mitigate the invader’s effect. In the present study, we considered the Mediterranean basin islands as an excellent study region to test how the same invasive species perform in different habitats within a single island, and to scale up differences among islands with similar climate. We tested how the performance of three widespread plant invaders with clonal growth but contrasting life-history traits, a deciduous tree Ailanthus altissima, a succulent subshrub Carpobrotus spp., and an annual geophyte Oxalis pes-caprae, varied depending upon the species identity, habitat, and invaded island. The environmental parameters considered were habitat type, elevation, species diversity in the invaded plot, and several soil traits (% C, % N, C/N, pH, and relative humidity). The study documents that the performance of these three important and widespread plant invaders is dependent mainly on species identity, and less upon the invaded island’s general features. Likewise, differences in performance among habitats were only significant in the case of Ailanthus, whereas Carpobrotus and Oxalis appear to perform equally well in different environments. Ailanthus thus appears to have a broader spectrum of invasiveness, being able to invade a larger number of habitat types. On the contrary, Carpobrotus spp. have not yet invaded habitats different from those where the species have been originally introduced and where they are still commonly spread by humans. Oxalis distribution is mainly related to agricultural activities and disturbed sites, and the total area infested by this geophyte may be more reflection of the extent of suitable habitats than of invasiveness or ecological impact. Our results confirm the potential for these species to significantly alter the functioning of ecosystems in the Mediterranean islands and highlight the risk to other islands not yet invaded.  相似文献   
6.
We examined whether the residual effects on soil caused by the invasion of Carpobrotus edulis, common iceplant, would inhibit the reestablishment of a native plant species. Carpobrotus edulis interacts both directly by suppressing the growth and establishment of other plants and indirectly by altering soil chemistry. We tested whether the residual effects of C. edulis resulted in lowered germination, survival, growth, and reproduction of Gilia millefoliata, a rare dune annual. We compared G. millefoliata planted in plots previously occupied by C. edulis to G. millefoliata planted in plots that previously had native vegetation. Each plot received three treatments: seed, transplant, and unplanted, and were censused every three weeks until senescence. Carpobrotus edulis had strong negative effects on the germination, survival, growth, and reproduction of G. millefoliata. C. edulis lowers soil pH and increases organic content due to the recalcitrance of tissue to decomposition, which may have evolved as a mechanism to facilitate recolonization and invasion.  相似文献   
7.
8.
Identifying the mechanism underlying plant invasiveness is a fast-moving research topic in current ecology. Phenotypic plasticity has been pointed out as a trait that can contribute to plant invasiveness. This experiment examines the presence of rapid adaptive evolution favoring plastic biomass partitioning during the invasion process. With that aim, we tested differences in patterns of biomass allocation between populations of Carpobrotus edulis from South Africa (native area) and the Iberian Peninsula (invaded area) growing under different nutrient, water and light availabilities in a common garden experiment. Here we demonstrate that biomass partitioning in response to nutrient availability in C. edulis differs between populations from native and invaded ranges, indicating that this trait could be under selection during the invasion process. Thus, nutrient shortage significantly increased the proportional production of roots in populations from the invaded range, but not in populations from the native area. This plastic root-foraging response may contribute to the optimization of nutrient uptake by plants, and therefore could be considered as an adaptive strategy. Understanding the ecological implications of rapid evolution for plastic biomass partitioning is important in determining processes of plant adaptation to new environments, and contributes to disentangling the mechanisms underlying plant invasiveness.  相似文献   
9.
A hypothetical adaptive response of succulent plants to drought-stress is the redistribution of water from old to young leaves. We examined the effects of possible movement of water from old to young leaves in three succulent species, Carpobrotus edulis (weak CAM-inducible), Kalanchoe tubiflora (CAM) and Sedum spectabile (possibly a CAM-cycler or CAM-inducible). Old leaves were removed from plants, and photosynthesis, transpiration, f. wt : d. wt ratios, diurnal acid fluctuations, stomatal conductance and internal CO2 concentrations of the remaining young leaves were measured during drought-stress. Comparison was made with plants retaining old leaves. There was no evidence that water moved from old to young leaves during drought-stress as previously hypothesized. Only in drought-stressed plants of K. tubiflora, were photosynthetic and transpiration rates of young leaves greater on shoots with old leaves removed compared with attached. There was a trend in all species for greater fluctuations in acidity in young leaves on shoots that lacked older leaves. For two of the three species studied, the f. wt : d. wt ratios of young leaves were greater under drought-stress, on shoots with old leaves removed than with them attached. Absence of old leaves may reduce competition for water with young leaves, which consequently have higher water content and greater photosynthetic rates.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号