首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6987篇
  免费   484篇
  国内免费   594篇
  2023年   62篇
  2022年   101篇
  2021年   113篇
  2020年   159篇
  2019年   209篇
  2018年   181篇
  2017年   200篇
  2016年   216篇
  2015年   187篇
  2014年   298篇
  2013年   404篇
  2012年   238篇
  2011年   391篇
  2010年   215篇
  2009年   386篇
  2008年   356篇
  2007年   394篇
  2006年   344篇
  2005年   333篇
  2004年   274篇
  2003年   247篇
  2002年   222篇
  2001年   150篇
  2000年   177篇
  1999年   179篇
  1998年   170篇
  1997年   152篇
  1996年   160篇
  1995年   163篇
  1994年   134篇
  1993年   124篇
  1992年   120篇
  1991年   94篇
  1990年   94篇
  1989年   97篇
  1988年   89篇
  1987年   60篇
  1986年   71篇
  1985年   79篇
  1984年   84篇
  1983年   51篇
  1982年   60篇
  1981年   47篇
  1980年   39篇
  1979年   31篇
  1978年   22篇
  1977年   21篇
  1975年   15篇
  1974年   9篇
  1973年   17篇
排序方式: 共有8065条查询结果,搜索用时 0 毫秒
1.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
2.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
3.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
4.
Concentration factor and biological half-life of 54Mn were determined in three species representing an ecologically and economically important food chain. Green algae (Chlorella spp.), Daphnia magna and yellow perch (Perca flavescens) were exposed to 54Mn in water and assayed for 54Mn uptake. Steady state concentration factors computed from the laboratory data for algae, Daphnia and perch were 4230, 17 000 and 11, respectively. Respective biological half-lives were 1.6, 1.2 and 8.3 days.  相似文献   
5.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated.  相似文献   
6.
Compound 26 is more potent against Escherichia coli. and 24 is more active against Staphylococcus aureus, β-Heamolytic streptococcus, Vibreo cholerae, Salmonella typhii, and Shigella flexneri than the standard drug ciprofloxacin. Moreover, of all the compounds tested, 26 is more effective against Aspergillus flavus and Mucor, than the standard drug fluconazole.  相似文献   
7.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
8.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
9.
Degrees of colonization of palynomorphs from six mangrove plants by chytrids and thraustochytrids in four mangrove plant communities at each stage of the pre–depositional taphonomic process were investigated using a pollen–baiting method. Chytrids and thraustochytrids were the dominant group colonizing palynomorphs in mangroves, gaining access to the cytoplasm through the wall or aperture. There were no significant differences in the degree of colonization between the different plant communities. Pollen with a larger size and/or extensive apertural region appeared to be the most colonized, while the absence of apertures and the presence of a thick wall seemed to reduce the chance of colonization by these microorganisms. Taphonomic experiments showed that the longer palynomorphs take to settle into the mangrove sediments, the lower the possibility of survival from the destructive colonization by chytrids and thraustochytrids and consequently the less carbon that will be sequestered.  相似文献   
10.
《Cryobiology》2016,72(3):419-431
Cryoprotection of bulky organs is crucial for their storage and for subsequent transplantation. In this work we demonstrate the capability of the X-ray computed tomography (CT) as a non-invasive method to measure the cryoprotectant (cpa) concentration inside a tissue or an organ, specifically for the case of dymethil sulfoxide (Me2SO). It is remarkable that the use of Me2SO has been leader in techniques of cells and tissues cryopreservation. Although CT technologies are mainly based in density differences, and many cpas are alcohols with densities similar to water, the use of very low energies as acceleration voltage (∼70 kV) and the sulfur atom in the molecule of Me2SO makes possible the visualization of this cpa inside tissues. As result we obtain a CT signal proportional to the Me2SO concentration with a spatial resolution up to 50 μm in the case of our device.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号