首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7384篇
  免费   163篇
  国内免费   88篇
  2024年   4篇
  2023年   36篇
  2022年   54篇
  2021年   68篇
  2020年   125篇
  2019年   120篇
  2018年   130篇
  2017年   98篇
  2016年   75篇
  2015年   137篇
  2014年   323篇
  2013年   417篇
  2012年   311篇
  2011年   439篇
  2010年   315篇
  2009年   282篇
  2008年   317篇
  2007年   342篇
  2006年   315篇
  2005年   271篇
  2004年   313篇
  2003年   288篇
  2002年   193篇
  2001年   114篇
  2000年   152篇
  1999年   157篇
  1998年   180篇
  1997年   181篇
  1996年   173篇
  1995年   175篇
  1994年   156篇
  1993年   133篇
  1992年   155篇
  1991年   140篇
  1990年   127篇
  1989年   117篇
  1988年   113篇
  1987年   104篇
  1986年   79篇
  1985年   75篇
  1984年   91篇
  1983年   52篇
  1982年   61篇
  1981年   44篇
  1980年   29篇
  1979年   12篇
  1978年   13篇
  1977年   13篇
  1976年   5篇
  1971年   3篇
排序方式: 共有7635条查询结果,搜索用时 15 毫秒
1.
The effect of dolichyl monophosphate on the permeability properties of dimyristoylphosphatidylcholine bilayers to alkaline cations, Ca2+ and glucose has been determined by stop-flow spectrophotometry. The results show that, in con trast to free dolichol effects, the monophosphate derivative increased the permeability following a decreasing order of the permeating particle size. Phase diagrams indicate that dolichyl monophosphate is fully incorporated into the phosphatidylcholine bilayer around 0.75% weight/weight ratio. For these ratios, the permeation of ions is higher in the gel than in the liquid crystalline state.  相似文献   
2.
3.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
4.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
5.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   
6.
7.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
8.
Neuropathic pain is a serious physical disabling condition resulting from lesion or dysfunction of the peripheral sensory nervous system. Despite the fact that the mechanisms underlying neuropathic pain are poorly understood, the involvement of voltage-gated calcium (CaV) channels in its pathophysiology has justified the use of drugs that bind the CaV channel α2δ auxiliary subunit, such as gabapentin (GBP), to attain analgesic and anti-allodynic effects in models involving neuronal sensitization and nerve injury. GBP binding to α2δ inhibits nerve injury-induced trafficking of the α1 pore forming subunits of CaV channels, particularly of the N-type, from the cytoplasm to the plasma membrane of pre-synaptic terminals in dorsal root ganglion neurons and dorsal horn spinal neurons. In the search for alternative forms of treatment, in this study we describe the synthesis and pharmacological profile of a GABA derivative, 2-aminoadamantane-1-carboxylic acid (GZ4), which displays a close structure–activity relationship with GBP. Behavioral assessment using von Frey filament stimuli showed that GZ4 treatment reverted mechanical allodynia/hyperalgesia in an animal model of spinal nerve ligation-induced neuropathic pain. In addition, using the patch clamp technique we show that GZ4 treatment significantly decreased whole-cell currents through N-type CaV channels heterologously expressed in HEK-293 cells. Interestingly, the behavioral and electrophysiological time course of GZ4 actions reflects that its mechanism of action is similar but not identical to that of GBP. While GBP actions require at least 24 h and imply uptake of the drug, which suggests that the drug acts mainly intracellularly affecting channels trafficking to the plasma membrane, the faster time course (1–3 h) of GZ4 effects suggests also a direct inhibition of Ca2+ currents acting on cell surface channels.  相似文献   
9.
Thresholds for detecting vibrotactile signals of variable frequency applied to the thenar eminence of the hand by small and large contactors were measured in subjects ranging in age from 10 to 89 years. Thresholds were found to increase as a function of age, but the rate of increase was greater after than before the age of 65 years. The rate of loss of vibrotactile sensitivity was substantially greater in the P channel (mediated by Pacinian corpuscles) than in the NP I channel (mediated by rapidly adapting fibers), the NP II channel (mediated by slowly adapting type II fibers), or the NP HI channel (mediated by slowly adapting type I fibers). Women were frequently found to have greater sensitivity than men.  相似文献   
10.
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatininduced open cell-attached patch could serve as an alternative configuration.Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and E rev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3–4pS) and E rev (75 mV), when the bath was perfused with a high K:low Na solution (E Na=80 mV), were nearly equal in both patch configurations.Our results therefore indicate that the nystatininduced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.We thank Dr. Olaf S. Andersen for his suggestions in the development of the open cell-attached recording technique. This work was supported by a National Institutes of Health grant (DK-18061)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号