首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8046篇
  免费   78篇
  国内免费   74篇
  8198篇
  2023年   20篇
  2022年   34篇
  2021年   52篇
  2020年   89篇
  2019年   88篇
  2018年   109篇
  2017年   81篇
  2016年   51篇
  2015年   133篇
  2014年   439篇
  2013年   647篇
  2012年   663篇
  2011年   891篇
  2010年   670篇
  2009年   289篇
  2008年   294篇
  2007年   283篇
  2006年   271篇
  2005年   235篇
  2004年   236篇
  2003年   217篇
  2002年   138篇
  2001年   67篇
  2000年   120篇
  1999年   122篇
  1998年   135篇
  1997年   145篇
  1996年   134篇
  1995年   132篇
  1994年   110篇
  1993年   108篇
  1992年   119篇
  1991年   105篇
  1990年   91篇
  1989年   80篇
  1988年   86篇
  1987年   77篇
  1986年   63篇
  1985年   88篇
  1984年   121篇
  1983年   86篇
  1982年   87篇
  1981年   49篇
  1980年   50篇
  1979年   19篇
  1978年   22篇
  1977年   17篇
  1976年   10篇
  1972年   7篇
  1971年   5篇
排序方式: 共有8198条查询结果,搜索用时 15 毫秒
1.
The effect of dolichyl monophosphate on the permeability properties of dimyristoylphosphatidylcholine bilayers to alkaline cations, Ca2+ and glucose has been determined by stop-flow spectrophotometry. The results show that, in con trast to free dolichol effects, the monophosphate derivative increased the permeability following a decreasing order of the permeating particle size. Phase diagrams indicate that dolichyl monophosphate is fully incorporated into the phosphatidylcholine bilayer around 0.75% weight/weight ratio. For these ratios, the permeation of ions is higher in the gel than in the liquid crystalline state.  相似文献   
2.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
3.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
4.
Past studies of bone extracellular matrix phosphoproteins such as osteopontin and bone sialoprotein have yielded important biological information regarding their role in calcification and the regulation of cellular activity. Most of these studies have been limited to proteins extracted from mammalian and avian vertebrates and nonvertebrates. The present work describes the isolation and purification of two major highly glycosylated and phosphorylated extracellular matrix proteins of 70 and 22 kDa from herring fish bones. The 70-kDa phosphoprotein has some characteristics of osteopontin with respect to amino acid composition and susceptibility to thrombin cleavage. Unlike osteopontin, however, it was found to contain high levels of sialic acid similar to bone sialoprotein. The 22-kDa protein has very different properties such as very high content of phosphoserine (∼270 Ser(P) residues/1000 amino acid residues), Ala, and Asx residues. The N-terminal amino acid sequence analysis of both the 70-kDa (NPIMA(M)ETTS(M)DSKVNPLL) and the 22-kDa (NQDMAMEASSDPEAA) fish phosphoproteins indicate that these unique amino acid sequences are unlike any published in protein databases. An enzyme-linked immunosorbent assay revealed that the 70-kDa phosphoprotein was present principally in bone and in calcified scales, whereas the 22-kDa phosphoprotein was detected only in bone. Immunohistological analysis revealed diffusely positive immunostaining for both the 70- and 22-kDa phosphoproteins throughout the matrix of the bone. Overall, this work adds additional support to the concept that the mechanism of biological calcification has common evolutionary and fundamental bases throughout vertebrate species.  相似文献   
5.
This research tested the utility of two classes of skin secretion compounds to the phylogeny of the Bufo crucifer group. Skin secretions from specimens of nine populations of B. crucifer group were obtained and submitted to qualitative analysis. We observed a clear difference in the composition of the skin secretion molecules obtained from the species of Bufo studied. Fifty-nine molecules, 16 indolealkylamines and 43 proteins, were used as characters, and 39 of these were parsimonious informative. The tree topology of the skin secretion combined data showed areas of congruence and conflict when compared to an mtDNA phylogeny of the B. crucifer group. We used the Templeton test to evaluate the heterogeneity between the skin secretion and mtDNA data. Although not recommended, we performed a combined analysis with the two partitions. The skin secretion characters from the species of Bufo studied have phylogenetic signal. These data are indicative, at least as a preliminary study, of the phylogenetic relationships among the B. crucifer group taxa.  相似文献   
6.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   
7.
Cytokinin-binding proteins   总被引:3,自引:0,他引:3  
This article is focused on the modalities of reception of cytokinins which remain largely unknown. It summarizes the main steps of the different protocols used to study cytokinin-binding proteins (CBPs). We place emphasis on the significance and specificity of the detection according to the properties of the probes used: radioactive or photoreactive cytokinins, fluorescent anticytokinins, anti-idiotype antibodies. The purification procedures are also examined. The cellular localisation and the putative physiological roles of the numerous and different CBPs found are considered. The interest of genetic and molecular studies is discussed.  相似文献   
8.
Generalized binding phenomena in an allosteric macromolecule   总被引:2,自引:0,他引:2  
A general macromolecular partition function is developed in terms of chemical ligand activity, temperature and pressure for systems described by an array of species which are characterized by their state of allosteric conformation and ligand stoichiometry. The effects of chemical ligand binding, enthalpy change, and volume change are treated in a parallel manner. From a broad viewpoint all of these effects can be regarded as specific cases of generalized binding phenomena. This approach provides a general method for analyzing calorimetric and ligand binding experiments. Several applications are given: (1) Thermal scanning data for tRNAphe (P.L. Privalov and V.V. Filimonov, J. Mol. Biol. 122 (1978) 447) are shown to fit a general model with six conformational states. By application of linkage theory it is shown that sodium chloride is expelled as the molecule denatures. (2) The results of calorimetric titrations on the arabinose binding protein (H. Fukada, J.M. Sturtevant and F.A. Quiocho, J. Mol. Biol. 258 (1983) 13193) are shown to fit a simple two-state allosteric model. (3) A thermal binding curve is simulated for an unusual respiratory protein, trout I hemoglobin (B.G. Barisas and S.J. Gill, Biophys. Chem. 9 (1979) 235), in order to illustrate both the similarities and differences between enthalpy and chemical ligand binding processes.  相似文献   
9.
10.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号