首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Activation of 5′-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5′-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase ce:sup>/ce:sup>/Mn2+-dependent (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the ce:sup>/ce:sup>/Mn2+-dependent protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggests that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target.  相似文献   
2.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) dephosphorylates and regulates multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs). However, the biological functions of this enzyme have not been clarified in vivo. To investigate the biological significance of CaMKP during zebrafish embryogenesis, we cloned and characterized zebrafish CaMKP (zCaMKP). The isolated cDNA clone possessed an open reading frame of 1272 bp encoding 424 amino acids and shared 47% and 48% amino acid identity with rat and human CaMKP, respectively. Interestingly, zCaMKP lacks the Glu cluster corresponding to residues 101-109 in the rat enzyme, and was not activated by polycations such as poly-l-lysine. The recombinant zCaMKP required Mg2+ rather than Mn2+ for activity. Furthermore, zCaMKP dephosphorylated CaMKIV but not phosphorylase a, α-casein, or extracellular signal-regulating kinase (ERK), suggesting that the enzyme regulates Ca2+ signaling pathways in zebrafish. Cotransfection of zCaMKP with mammalian CaMKI significantly decreased phospho-CaMKI in ionomycin-stimulated 293T cells. During embryogenesis, the expression of zCaMKP increased gradually after 48 h post-fertilization, as demonstrated by Western blotting using an anti-zCaMKP antibody. The knockdown of the zCaMKP gene with morpholino-based antisense oligonucleotides resulted in an increased incidence of embryos with severe morphological and cellular abnormalities, i.e., a significant increase in the number of round-shaped embryos and apoptotic cells in the whole body. A marked decrease in zCaMKP expression was observed in the antisense- but not control oligo-injected embryos. Embryonic death was rescued by coinjection with recombinant rat CaMKP but not with phosphatase-dead mutant (D194A). These results clearly show the significance of zCaMKP during zebrafish embryogenesis.  相似文献   
3.
Nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N) is an enzyme that dephosphorylates and concomitantly downregulates multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) in vitro. However, the functional roles of this enzyme in vivo are not well understood. To investigate the biological significance of CaMKP-N during zebrafish embryogenesis, we cloned and characterized zebrafish CaMKP-N (zCaMKP-N). Based on the nucleotide sequences in the zebrafish whole genome shotgun database, we isolated a cDNA clone for zCaMKP-N, which encoded a protein of 633 amino acid residues. Transiently expressed full-length zCaMKP-N in mouse neuroblastoma, Neuro2a cells, was found to be localized in the nucleus. In contrast, the C-terminal truncated mutant lacking RKKRRLDVLPLRR (residues 575-587) had cytoplasmic staining, suggesting that the nuclear localization signal of zCaMKP-N exists in the C-terminal region. Ionomycin treatment of CaMKIV-transfected Neuro2a cells resulted in a marked increase in the phosphorylated form of CaMKIV. However, cotransfection with zCaMKP-N significantly decreased phospho-CaMKIV in ionomycin-stimulated cells. Whole mount in situ hybridization analysis of zebrafish embryos showed that zCaMKP-N is exclusively expressed in the head and neural tube regions. Gene knockdown of zCaMKP-N using morpholino-based antisense oligonucleotides induced significant morphological abnormalities in zebrafish embryos. A number of apoptotic cells were observed in brain and spinal cord of the abnormal embryos. These results suggest that zCaMKP-N plays a crucial role in the early development of zebrafish.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号