首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  1986年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
To investigate the role of catalase and superoxide dismutase (SOD) in the acetic acid (AA) induced yeast programmed cell death (AA-PCD), we compared Saccharomyces cerevisiae cells (C-Y) and cells individually over-expressing catalase T (CTT1-Y) and Cu,Zn-SOD (SOD1-Y) with respect to cell survival, hydrogen peroxide (H2O2) levels and enzyme activity as measured up to 200 min after AA treatment. AA-PCD does not occur in CTT1-Y, where H2O2 levels were lower than in C-Y and the over-expressed catalase activity decreased with time. In SOD1-Y, AA-PCD was exacerbated; high H2O2 levels were found, SOD activity increased early, remaining constant en route to AA-PCD, but catalase activity was strongly reduced.  相似文献   
3.
Ca2+ signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca2+-signaling network is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a tetrameric channel that mediates Ca2+ release from the endoplasmic reticulum (ER) in response to IP3. IP3R function is controlled by a myriad of factors, such as Ca2+, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IP3R-mediated Ca2+ signaling is the result of the existence of three main isoforms (IP3R1, IP3R2 and IP3R3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IP3R1 is highly expressed in neurons, IP3R2 in cardiomyocytes and hepatocytes and IP3R3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IP3R isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IP3R1 to dysfunctional exocrine tissues and autoimmune diseases for IP3R2 and -3. Over the past years, several IP3R mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IP3R isoform and the subsequent molecular mechanisms underlying the etiology of the disease.  相似文献   
4.
Bacteria species involved in degradation of cellulosic substrates produce a variety of enzymes for processing related compounds along the hydrolytic pathway. Paenibacillus polymyxa encodes two homologous beta-glucosidases, BglA and BglB, presenting different quaternary structures and substrate specificities. We previously reported the 3D-structure of BglA, which is highly specific against cellobiose. Here, we present structural analysis of BglB, a monomeric enzyme that acts as an exo-beta-glucosidase hydrolyzing cellobiose and cellodextrins of higher degree of polymerization. The crystal structure of BglB shows that several polar residues narrow the active site pocket and contour additional subsites. The structure of the BglB-cellotetraose complex confirms these subsites, revealing the substrate-binding mode, and shows the oligosaccharide-enzyme recognition pattern in detail. Comparison between BglA and BglB crystal structures suggests that oligomerization in BglA can assist in fine-tuning the specificity of the active centre by modulating the loops surrounding the cavity. We have solved the crystal structure of BglB with bound thiocellobiose, a competitive inhibitor, which together with the BglB-cellotetraose complex delineate the general features of the aglycon site. The detailed characterization of the atomic interactions at the aglycon site show a recognition pattern common to all bacterial beta-glucosidases, and presents some differences with the aglycon site in plant beta-glycosidases essentially by means of a different orientation of the basal Trp. The crystal structures of of BglB with a covalently bound inhibitor (derived from 2-fluoroglucoside) and glucose (produced by hydrolysis of the substrate in the crystal), provide additional pictures of the binding events and the intermediates formed during the reaction. Altogether, this information can assist in the understanding of subtle differences of the enzyme mechanism and substrate recognition within this family of enzymes, and consequently it can help in the development of new enzymes with improved activity or specificity.  相似文献   
5.
Biological production and oxidation of hydrogen is mediated by hydrogenases, key enzymes for these energy-relevant reactions. Synthesis of [NiFe] hydrogenases involves a complex series of biochemical reactions to assemble protein subunits and metallic cofactors required for enzyme function. A final step in this biosynthetic pathway is the processing of a C-terminal tail (CTT) from its large subunit, thus allowing proper insertion of nickel in the unique NiFe(CN)2CO cofactor present in these enzymes. In silico modelling and Molecular Dynamics (MD) analyses of processed vs. unprocessed forms of Rhizobium leguminosarum bv. viciae (Rlv) hydrogenase large subunit HupL showed that its CTT (residues 582-596) is an intrinsically disordered region (IDR) that likely provides the required flexibility to the protein for the final steps of proteolytic maturation. Prediction of pKa values of ionizable side chains in both forms of the enzyme's large subunit also revealed that the presence of the CTT strongly modify the protonation state of some key residues around the active site. Furthermore, MD simulations and mutant analyses revealed that two glutamate residues (E27 in the N-terminal region and E589 inside the CTT) likely contribute to the process of nickel incorporation into the enzyme. Computational analysis also revealed structural details on the interaction of Rlv hydrogenase LSU with the endoprotease HupD responsible for the removal of CTT.  相似文献   
6.
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644-1670 bound with a Kd ~ 1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.  相似文献   
7.
Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP(3)R1 is CTT14aa.  相似文献   
8.
The thermostable 1,3–1,4-β-glucanase PtLic16A from the fungus Paecilomyces thermophila catalyzes stringent hydrolysis of barley β-glucan and lichenan with an outstanding efficiency and has great potential for broad industrial applications. Here, we report the crystal structures of PtLic16A and an inactive mutant E113A in ligand-free form and in complex with the ligands cellobiose, cellotetraose and glucotriose at 1.80 Å to 2.25 Å resolution. PtLic16A adopts a typical β-jellyroll fold with a curved surface and the concave face forms an extended ligand binding cleft. These structures suggest that PtLic16A might carry out the hydrolysis via retaining mechanism with E113 and E118 serving as the nucleophile and general acid/base, respectively. Interestingly, in the structure of E113A/1,3–1,4-β-glucotriose complex, the sugar bound to the − 1 subsite adopts an intermediate-like (α-anomeric) configuration. By combining all crystal structures solved here, a comprehensive binding mode for a substrate is proposed. These findings not only help understand the 1,3–1,4-β-glucanase catalytic mechanism but also provide a basis for further enzymatic engineering.  相似文献   
9.
Kinesin-5 (K5) motors are important components of the microtubule (MT)-based cell division machinery and are targets for small-molecule inhibitors currently in cancer clinical trials. However, the nature of the K5-MT interaction and the regulatory mechanisms that control it remain unclear. Using cryo-electron microscopy and image processing, we calculated the structure of a K5 motor bound to MTs at 9 Å resolution, providing insight into this important interaction. Our reconstruction reveals the K5 motor domain in an ATP-like conformation in which MT binding induces the conserved nucleotide-sensing switch I and II loops to form a compact subdomain around the bound nucleotide. Our reconstruction also reveals a novel conformation for the K5-specific drug-binding loop 5, suggesting a possible role for it in switching K5s between force generation and diffusional modes of MT binding. Our data thus shed light on regulation of the interaction between spindle components important for chromosome segregation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号