首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Lipid-laden foam macrophages are emerging as key players in early atherogenesis. Even though cytoplasmic lipid bodies (lipid droplets) are now recognized as organelles with cell functions beyond lipid storage, the mechanisms controlling lipid body biogenesis within macrophages and their additional functions in atherosclerosis are not completely elucidated. Here we studied oxLDL-elicited macrophage machinery involved in lipid body biogenesis as well as lipid body roles in leukotriene (LT) synthesis. Both in vivo and in vitro, oxLDL (but not native LDL) induced rapid assembly of cytoplasmic lipid bodies-bearing ADRP within mice macrophages. Such oxLDL-elicited foamy-like phenotype was a pertussis toxin-sensitive process that depended on a paracrine activity of endogenous MCP-1/CCL2 and activation of ERK. Pretreatment with neutralizing anti-MCP-1/CCL2 inhibited macrophage ADRP protein expression induced by oxLDL. By directly immuno-localizing leukotrienes at their sites of synthesis, we showed that oxLDL-induced newly formed lipid bodies function as active sites of LTB4 and LTC4 synthesis, since oxLDL-induced lipid bodies within foam macrophages compartmentalized the enzyme 5-lipoxygenase and five lipoxygenase-activating protein (FLAP) as well as newly formed LTB4 and LTC4. Consistent with MCP-1/CCL-2 role in ox-LDL-induced lipid body biogenesis, in CCR2 deficient mice both ox-LDL-induced lipid body assembly and LT release were reduced as compared to wild type mice. In conclusion, oxLDL-driven foam cells are enriched with leukotriene-synthesizing lipid bodies – specialized organelles whose biogenic process is mediated by MCP-1/CCL2-triggered CCR2 activation and ERK-dependent downstream signaling – that may amplify inflammatory mediator production in atherosclerosis.  相似文献   
2.
Cerebral ischemia (CI), caused by the deprivation of oxygen and glucose to the brain, is the leading cause of permanent disability. Neuronal demise in CI has been linked to several pathways which include cyclooxygenases (COX) − mediated production of prostaglandins (PGs) and subsequently reactive oxygen species (ROS), aquaporin-4 (AQ-4) − mediated brain edema and acidsensing ion channel-1a (ASIC-1a) − mediated acidotoxicity, matrix remodeling, in addition to others. Several non-steroidal antiinflammatory drugs (NSAIDs) are presently in use to prevent these pathways. However, owing to the large number of processes involved, there is high drug load. So, identifying drugs with multimodal role has always been a frequently sought venture. The present in silico study has been performed to find out the relative efficacy of three different NSAIDs (Piroxicam, Aspirin and Nimesulide) in preventing neurodegeneration in CI, with respect to their inhibitory potential on COXs, AQ-4 and ASIC-1a. We find that piroxicam is the most potent inhibitor of these receptors as compared to the NSAIDs under investigation. Since piroxicam has already been reported to inhibit N-methyl-D-aspartate (NMDA) receptor and matrix metalloproteinases (MMPs), which are also linked to CI-induced neurodegeneration, we hereby propose piroxicam to be a gold-standard drug in preventing neurodegeneration in CI.  相似文献   
3.
Investigations were carried out to understand the molecular basis of the effect of ursolic acid on angiogenesis by analysing its effects on the expression of modulators of angiogenesis by HUVECs in culture. Treatment with ursolic acid increased the expression of adhesion molecules such as E-selectin, CD-31 and I-CAM, upregulated angiogenic growth factors such as VEGF and FGF-2 and their receptors and caused increase in the ratio of PGE2 to PGD2. Reversal of the effect of ursolic acid by inhibition of PI3K-Akt pathway and increase in the level of phospho Akt suggest that the ursolic acid effect is mediated through PI3K-Akt pathway.  相似文献   
4.
The inflammatory response is the reaction of living tissue to an injury of a foreign nature, such as infection and irritants, and occurs as part of the body's natural defence response. Compounds capable of inhibiting cyclooxygenase (COX) enzymes, especially COX-2, have great potential as anti-inflammatory agents. Herein we present the regioselective synthesis of 49 novel compounds based on the 2-pyridone nucleus. The topical anti-inflammatory activity of seventeen compounds was evaluated in mice by croton oil (CO) induced ear edema assay. Most of the compounds exhibited a high level of in vivo anti-inflammatory activity, reducing ear edema and myeloperoxidase (MPO) activity. The most active compounds (2a and 7a) were inhibitors of COX enzymes. Compound 2a selectively inhibited the COX-2, while 7a was nonselective. Further, the compound 2a showed effective binding at the active site of COX-2 co-crystal by docking molecular study.  相似文献   
5.
As the brain ages, cognitive and motor performance decline. This decline is thought to be largely due to the accumulation of damaging products from normal oxidative metabolism and to the perturbation of general body homeostasis and brain-circulation separation. Despite this abundance of insults, the aged brain contains few dead neurons, suggesting that aging must be paralleled by triggering or enhancing neuronal survival mechanisms. Recent evidence points to the contribution of changes in the lipid composition of membranes to both age-dependent cognitive decline and robust neuronal survival. In this review, we describe and discuss the current understanding of the roles of lipids in neuronal aging, with special attention to their influence on membrane fusion, neurotransmitter receptor dynamics and survival/death signaling pathways.  相似文献   
6.
To enhance the cytotoxicity of benzimidazole and/or benzoxazole core, the benzimidazole/benzoxazole azo-pyrimidine were synthesized through diazo-coupling of 3-aminophenybenzimidazole (6a) or 3-aminophenylbenzoxazole (6b) with diethyl malonate. The new azo-molanates 6a&b mixed with urea in sodium ethoxide to afford the benzimidazolo/benzoxazolopyrimidine 7a&b. The structure elucidation of new synthesized targets was proved using spectroscopic techniques NMR, IR and elemental analysis. The cytoxicity screening had been carried out against five cancer cell lines: prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), pancreas cancer (PaCa-2) and colon cancer (HT-29). Furthermore, the antioxidant activity, phospholipase A2-V and cyclooxygenases inhibitory activities of the target compounds 7a&b were evaluated and the new compounds showed potent activity (cytotoxicity IC50 range from 4.3 to 9.2 µm, antioxidant activity from 40% to 80%, COXs or LOX inhibitory activity from 1.92 µM to 8.21 µM). The docking of 7a&b was made to confirm the mechanism of action.  相似文献   
7.
Alzheimer’s disease (AD) is the most prevalent disease of old age leading to dementia. Complex AD pathogenesis involves multiple factors viz. amyloid plaque formation, neurofibrillary tangles and inflammation. Herein we report of a new series of quinoxaline-bisthiazoles as multitarget-directed ligands (MTDLs) targeting BACE-1 and inflammation concurrently. Virtual screening of a library of novel quinoxaline-bisthiazoles was performed by docking studies. The most active molecules from the docking library were taken up for synthesis and characterized by spectral data. Compounds 8a-8n showed BACE-1 inhibition in micro molar range. One of the compounds, 8n showed BACE-1 inhibition at IC50 of 3 ± 0.07 µM. Rat paw edema inhibition in acute and chronic models of inflammation were obtained at 69 ± 0.45% and 55 ± 0.7%, respectively. Compound 8n also showed noteworthy results in AlCl3 induced AD model. The treated rats exhibited excellent antiamnesic, antiamyloid, antioxidant, and neuroprotective properties. Behavioural parameters suggested improved cognitive functions which further validates the testimony of present study. Moreover, compound 8n was found to have inherent gastrointestinal safety. This new string of quinoxaline-bisthiazoles were identified as effective lead for the generation of potent MTDLs and compound 8n was found to showcase qualities to tackle AD pathogenesis.  相似文献   
8.
Abstract

Twenty novel talmapimod analogues were designed, synthesised and evaluated for the in vivo anti-inflammatory activities. Among them, compound 6n, the most potent one, was selected for exploring the mechanisms underlying its anti-inflammatory efficacy. In RAW264.7 cells, it effectively suppressed lipopolysaccharides-induced (LPS-induced) expressions of iNOS and COX-2. As illustrated by the western blot analysis, 6n downregulated both the NF-κB signalling and p38 MAPK phosphorylation. Further enzymatic assay identified 6n as a potent inhibitor against both p38α MAPK (IC50=1.95?µM) and COX-2 (IC50=0.036?µM). By virtue of the concomitant inhibition of p38α MAPK, its upstream effector, and COX-2, along with its capability to downregulate NF-κB and MAPK-signalling pathways, 6n, a polypharmacological anti-inflammatory agent, deserves further development as a novel anti-inflammatory drug.  相似文献   
9.
10.
Salicylic acid is an NSAID with serious side effects on the GIS. The side effects of salicylic acid on the GIS are slightly reduced by acetylating salicylic acid. 12 new ester analogs of salicylic acid were synthesized with high yields in this study. The chemical structures of the synthesized compounds were characterized by 1H-NMR, 13C-NMR, and HRMS spectra. The inhibitory potential of the compounds was evaluated on COXs by in vitro and in silico studies. The COX2 inhibitory activity of the most potent inhibitor MEST1 (IC50: 0.048 μM) was found to be much higher than the COX2 inhibitory activity of aspirin (IC50: 2.60 μM). In docking studies, the strongest inhibitor among the compounds synthesized was predicted to be MEST1, with the lowest binding energy. Docking studies revealed that MEST1 extends from the hydrophobic channel to the top of the cyclooxygenase active site, forming various interactions with residues in the binding pocket.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号