首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   7篇
  2017年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   9篇
  2011年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Elongation and elevation of palatal shelves, mainly caused by proliferation and extra-cellular matrix synthesis of palatal mesenchymal cells (PMCs), are essential for normal palatal development. Transforming growth factor beta (TGFB) pathway could induce proliferation inhibition and collagen synthesis in PMCs. Recent studies found that miRNA-17-92 (miR-17-92) cluster, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a, expressed in the 1st bronchial arch of mouse embryos during the period of palatal shelf elongation and elevation, and directly targeted TGFB pathway in cancer cell lines. Whether miR-17-92 cluster expresses and targets TGFB pathway in PMCs has not yet been studied. Using quantitative real-time RT-PCR, we found that miR-17-92 expressed in PMCs and decreased from embryonic day (E) 12 to E14 in palatal shelves. MTT assay and Western blot showed that miR-17-92 inhibited TGFB1 induced proliferation inhibition and collagen synthesis in PMCs by decreasing TGFBR2, SMAD2, and SMAD4 protein level. Further luciferase assay showed that miR-17 and miR-20a directly targeted 3′UTR of TGFBR2, and that miR-18a directly targeted 3′UTR of SMAD2 and SMAD4. We thus conclude that miR-17-92 cluster could inhibit TGFB pathway induced proliferation inhibition and collagen synthesis in PMCs by directly targeting TGFBR2, SMAD2, and SMAD4.  相似文献   
3.
4.
5.
6.
7.
Hyaluronan (HA) degradation produces small oligosaccharides that are able to increase pro-inflammatory cytokines in rheumatoid arthritis synovial fibroblasts (RASF) by activating both CD44 and the toll-like receptor 4 (TLR-4). CD44 and TLR-4 stimulation in turn activate the NF-kB that induces the production of pro-inflammatory cytokines. Degradation of HA occurs via two mechanisms: one exerted by reactive oxygen species (ROS) and one controlled by different enzymes in particular hyaluronidases (HYALs). We aimed to investigate the effects of inhibiting HA degradation (which prevents the formation of small HA fragments) on synovial fibroblasts obtained from normal DBA/J1 mice (NSF) and on synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA), both fibroblast types stimulated with tumor necrosis factor alpha (TNF-α). TNF-α stimulation produced high mRNA expression and the related protein production of CD44 and TLR-4 in both NSF and RASF, and activation of NF-kB was also found in all fibroblasts. TNF-α also up-regulated the inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and other pro-inflammatory mediators, such as matrix metalloprotease-13 (MMP-13), inducible nitric oxide synthase (iNOS), as well as HA levels and small HA fragment production. Treatment of RASF with antioxidants and specific HYAL1, HYAL2, and HYAL3 small interference RNA (siRNAs) significantly reduced TLR-4 and CD44 increase in the mRNA expression and the related protein synthesis, as well as the release of inflammatory mediators up-regulated by TNF-α. These data suggest that the inhibition of HA degradation during arthritis may contribute to reducing TLR-4 and CD44 activation and the inflammatory mediators response.  相似文献   
8.
Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号