首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2017年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 281 毫秒
1
1.
Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) have proven to be a powerful tool for the identification of novel genes. CODEHOPs are designed from highly-conserved regions of multiply-aligned protein sequences from members of a gene family and are used in PCR amplification to identify distantly-related genes. The CODEHOP approach has been used to identify novel pathogens by targeting amino acid motifs conserved in specific pathogen families. We initiated a program utilizing the CODEHOP approach to develop PCR-based assays targeting a variety of viral families that are pathogens in non-human primates. We have also developed and further improved a computer program and website to facilitate the design of CODEHOP PCR primers. Here, we detail the method for the development of pathogen-specific CODEHOP PCR assays using the papillomavirus family as a target. Papillomaviruses constitute a diverse virus family infecting a wide variety of mammalian species, including humans and non-human primates. We demonstrate that our pan-papillomavirus CODEHOP assay is broadly reactive with all major branches of the virus family and show its utility in identifying a novel non-human primate papillomavirus in cynomolgus macaques.  相似文献   
2.
Degenerate PCR method for identification of an antiapoptotic gene in BHV-1   总被引:2,自引:0,他引:2  
To investigate on the hypothetical presence of an antiapoptotic gene, we utilized the CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primers) strategy amplifying unknown sequences from a background of genomic (bovine herpesvirus type-1) BHV-1 DNA. An alignment of carboxyl-terminal domains belonging to three proteins encoded by gamma34.5, MyD116 and GADD34 genes, was carried out to design degenerate PCR primers in highly conserved regions. This allowed the amplification of a 110 bp fragment. This fragment was subjected to automatic sequencing and DNA sequence analysis revealed that its position resided between the nt 14363 and the nt 14438 in bovine herpesvirus type-1 (BHV-1) Cooper strain sharing an identity of 86% (UL14). Transient transfections showed that UL14 protein is efficient in protecting MDBK and K562 cells from sorbitol induced apoptosis. The protein's anti-apoptotic function may derive from its heat shock protein-like properties.  相似文献   
3.
This study is the first molecular and biochemical analysis conducted on Pompia, a plant of unknown origin that is endemic to Sardinia; this plant is thought to belong to the Citrus genus. Here, genes coding for the enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and polyphenol oxidase (PPO, EC 1.14.18.1) were identified. We detected the aforementioned enzymes in fresh leaf tissue and assessed the catalytic activity of each to support the molecular and biochemical data. This was the first molecular study to define the primary structure of proteins with antioxidant activity in Pompia. The study also contributed to the enrichment of gene databases and created the basis for molecular phylogenetic studies, which is important because this plant currently has no taxonomic or phylogenetic classification.  相似文献   
4.
Bioluminescence is reported in members of 18 dinoflagellate genera. Species of dinoflagellates are known to have different bioluminescent signatures, making it difficult to assess the presence of particular species in the water column using optical tools, particularly when bioluminescent populations are in nonbloom conditions. A “universal” oligonucleotide primer set, along with species and genus‐specific primers specific to the luciferase gene were developed for the detection of bioluminescent dinoflagellates. These primers amplified luciferase sequences from bioluminescent dinoflagellate cultures and from environmental samples containing bioluminescent dinoflagellate populations. Novel luciferase sequences were obtained for strains of Alexandrium cf. catenella (Whedon et Kof.) Balech and Alexandrium fundyense Balech, and also from a strain of Gonyaulax spinifera (Clap. et Whitting) Diesing, which produces bioluminescence undetectable to the naked eye. The phylogeny of partial luciferase sequences revealed five significant clades of the dinoflagellate luciferase gene, suggesting divergence among some species and providing clues on their molecular evolution. We propose that the primers developed in this study will allow further detection of low‐light‐emitting bioluminescent dinoflagellate species and will have applications as robust indicators of dinoflagellate bioluminescence in natural water samples.  相似文献   
5.
The soil-borne and marine gram-positive Actinomycetes are a particularly rich source of carbohydrate-containing metabolites. With the advent of molecular tools and recombinant methods applicable to Actinomycetes, it has become feasible to investigate the biosynthesis of glycosylated compounds at genetic and biochemical levels, which has finally set the basis for engineering novel natural product derivatives. Glycosyltransferases (GT) are key enzymes for the biosynthesis of many valuable natural products that contain sugar moieties and they are most important for drug engineering. So far, the direct cloning of unknown glycosyltransferase genes by polymerase chain reaction (PCR) has not been described because glycosyltransferases do not share strongly conserved amino acid regions. In this study, we report a method for cloning of novel so far unidentified glycosyltransferase genes from different Actinomycetes strain. This was achieved by designing primers after a strategy named consensus-degenerate hybrid oligonucleotide primer (CODEHOP). Using this approach, 22 novel glycosyltransferase encoding genes putatively involved in the decoration of polyketides were cloned from the genomes of 10 Actinomycetes. In addition, a phylogenetic analysis of glycosyltransferases from Actinomycetes is shown in this paper.  相似文献   
6.
Muggia L  Lucia M  Grube M  Martin G 《Fungal biology》2010,114(4):379-385
Lichenized and non-lichenized fungi produce a wide range of secondary metabolites. So far, type I polyketide synthases (PKSs) are the suggested catalysts for the biosynthesis of lichen compounds. We were interested whether lichen mycobionts also contain type III PKSs, representing a class that was only recently discovered in fungi. With an alignment of known type III CHS-like genes we applied the CODEHOP strategy to design degenerate PCR primers. We further screened available fungal genomes for type III PKS genes and aligned these sequences for a phylogenetic analysis. Type III-like genes from lichen mycobionts are closely related to those known from non-lichenized fungi, but not to those of bacteria and/or plants. We conclude that type III PKS genes are ubiquitous in fungi. They are present in diverse unrelated lichen mycobionts, but their function in lichens is so far unclear.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号