首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2008年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
Understanding the effects of mutation on pH‐dependent protein binding affinity is important in protein design, especially in the area of protein therapeutics. We propose a novel method for fast in silico mutagenesis of protein–protein complexes to calculate the effect of mutation as a function of pH. The free energy differences between the wild type and mutants are evaluated from a molecular mechanics model, combined with calculations of the equilibria of proton binding. The predicted pH‐dependent energy profiles demonstrate excellent agreement with experimentally measured pH‐dependency of the effect of mutations on the dissociation constants for the complex of turkey ovomucoid third domain (OMTKY3) and proteinase B. The virtual scanning mutagenesis identifies all hotspots responsible for pH‐dependent binding of immunoglobulin G (IgG) to neonatal Fc receptor (FcRn) and the results support the current understanding of the salvage mechanism of the antibody by FcRn based on pH‐selective binding. The method can be used to select mutations that change the pH‐dependent binding profiles of proteins and guide the time consuming and expensive protein engineering experiments. As an application of this method, we propose a computational strategy to search for mutations that can alter the pH‐dependent binding behavior of IgG to FcRn with the aim of improving the half‐life of therapeutic antibodies in the target organism. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
The conformational flexibility and the dynamics of -D-Manp-(12)--D-Glcp-OMe have been investigated by Metropolis Monte Carlo (MMC) and Langevin dynamics (LD) simulations. The two simulation techniques employ different force fields, namely the HSEA force field and a CHARMm-based force field. The former shows less conformational flexibility than the latter, in which a multiple energy minima conformational space is sampled. Long-range heteronuclear nuclear magnetic resonance (NMR) coupling constants have been measured by selective excitations of the carbons at the glycosidic linkage. Calculated 3JC, H values from MMC and LD simulations show excellent agreement to those from NMR experiments. The X-ray crystal structure has a conformation within a region of the conformational space populated in both force fields.  相似文献   
3.
We report a very fast and accurate physics-based method to calculate pH-dependent electrostatic effects in protein molecules and to predict the pK values of individual sites of titration. In addition, a CHARMm-based algorithm is included to construct and refine the spatial coordinates of all hydrogen atoms at a given pH. The present method combines electrostatic energy calculations based on the Generalized Born approximation with an iterative mobile clustering approach to calculate the equilibria of proton binding to multiple titration sites in protein molecules. The use of the GBIM (Generalized Born with Implicit Membrane) CHARMm module makes it possible to model not only water-soluble proteins but membrane proteins as well. The method includes a novel algorithm for preliminary refinement of hydrogen coordinates. Another difference from existing approaches is that, instead of monopeptides, a set of relaxed pentapeptide structures are used as model compounds. Tests on a set of 24 proteins demonstrate the high accuracy of the method. On average, the RMSD between predicted and experimental pK values is close to 0.5 pK units on this data set, and the accuracy is achieved at very low computational cost. The pH-dependent assignment of hydrogen atoms also shows very good agreement with protonation states and hydrogen-bond network observed in neutron-diffraction structures. The method is implemented as a computational protocol in Accelrys Discovery Studio and provides a fast and easy way to study the effect of pH on many important mechanisms such as enzyme catalysis, ligand binding, protein-protein interactions, and protein stability.  相似文献   
4.
Molecular dynamics (MD) simulations were carried out to study the conformational rearrangement induced by deprotonation of the fluorescent chromophore in GFP, as well as the associated changes in the hydrogen-bonding network. For both the structures with either a neutral or an anionic chromophore, it was found that the beta-barrel was stable and rigid, and the conformation of the chromophore was consistent with the available x-ray structure. The conformational change in Thr203 due to deprotonation was also found to be consistent with the three-state isomerization model. Although GFP is highly fluorescent, denatured-GFP is nonfluorescent, indicating that the environment of the protein plays an important role in its fluorescence behavior. Our MD simulations, which explore the effect of the protein shell on the conformation of the chromophore, find the flexibility of the central chromophore to be significantly restricted due to the rigid nature of the protein shell. The hydrogen-bonding between the chromophore and neighboring residues was also shown to contribute to the chromophore rigidity. In addition to the MD studies, quantum mechanics/molecular mechanics (QM/MM) ONIOM calculations were carried out to investigate the effect of the beta-barrel on the internal rotation in the chromophore. Along with providing quantitative values for torsional rotation barriers about the bridging bond in the chromophore, the ONIOM calculations also validate our MD force field parameters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号