首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2019年   1篇
  2016年   1篇
  2011年   1篇
  2007年   2篇
  2005年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有17条查询结果,搜索用时 203 毫秒
1.
Suramin is a well-known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers. Previous study showed that suramin is an activator of extracellular signal-regulated kinase (ERK1/2) signaling in several cell lines including Chinese hamster ovary cells, although the physiological relevance of this activation remains uncertain. Here, it was shown that suramin enhances neurite outgrowth concomitant with activation of ERK1/2 in Neuro-2a cells, a neuronal cell line. These neurite outgrowth and ERK1/2 activation were significantly inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase, as well as by activation of endogenous adenosine A2A receptors. The suramin-induced phosphorylation of ERK1/2 was also inhibited by inhibitors of Src family kinases. This attenuation of ERK1/2 activity was accompanied by a significant decrease in suramin-induced neurite outgrowth. These results suggest that suramin activates the Src/ERK1/2 signaling pathway that induces neurite outgrowth, both of which are negatively regulated by cAMP produced in response to activation of endogenous adenosine A2A receptors.  相似文献   
2.
Abstract: To determine the functions of striatal adenosine A2a receptors in vivo, the effects of a selective agonist, 2-[4-(2-carboxyethyl)phenethylamino]-5'- N -ethylcarboxamidoadenosine hydrochloride (CGS 21680), and an antagonist, ( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837), on acetylcholine release were investigated in the striatum of awake freely moving rats using microdialysis. Intracerebroventricular injection of CGS 21680 (10 µg) increased acetylcholine release in striatum and KF17837 (30 mg/kg p.o.) antagonized the CGS 21680-induced acetylcholine elevation. To investigate the contribution of dopaminergic and GABAergic neurons on A2a receptor-mediated acetylcholine release, the effects of CGS 21680 were studied by using dopamine-depleted rats in the presence or absence of GABA antagonists. In the dopamine-depleted striatum, the intrastriatal application of CGS 21680 (0.3–30 µ M ) increased extracellular acetylcholine, which was significantly greater than that in normal striatum. The CGS 21680-induced elevation of acetylcholine release was still observed in the presence of GABA antagonists bicuculline (30 µ M ) and 2-hydroxysaclofen (100 µ M ) and was similar in both normal and dopamine-depleted striatum. These results suggest that A2a agonist stimulates acetylcholine release in vivo, and this effect of A2a agonist is modulated by dopaminergic and GABAergic neurotransmission.  相似文献   
3.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   
4.
Abstract: The role of the A2A adenosine receptor in regulating voltage-sensitive calcium channels (VSCCs) was investigated in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ could be inhibited with CGS21680, an A2A receptor-specific agonist. Both L- and N-type VSCCs were inhibited by CGS21680 treatment. Effects of adenosine receptor agonists and antagonists indicate that the typical A2A receptor mediates inhibition of VSCCs. Cholera toxin (CTX) treatment for 24 h completely eliminated the CGS21680 potency. Similar inhibitory effects on VSCCs were obtained by membrane-permeable activators of protein kinase A (PKA). These effects were blocked by Rp -adenosine-3',5'-cyclic monophosphothioate, a PKA inhibitor. The data suggest that activation of the A2A receptor leads to inhibition of VSCCs via a CTX-sensitive G protein and PKA. ATP pretreatment caused a reduction in subsequent rise in cytosolic free Ca2+ concentration induced by 70 m M K+, presumably by inactivation of VSCCs. Simultaneous treatment with ATP and CGS21680 produced significantly greater inhibition of VSCCs than treatment with CGS21680 or ATP alone. Furthermore, the CGS21680-induced inhibition of VSCCs was not affected by the presence of reactive blue 2. CGS21680 still significantly inhibited ATP-evoked Ca2+ influx without VSCC activity after cobalt or 70 m M K+ pretreatment. These data suggest that the A2A receptor-sensitive VSCCs differ from those activated by ATP treatment. Although A2A receptors induce inhibition of VSCCs as well as ATP-induced Ca2+ influx, the two inhibitory effects are clearly distinct from each other.  相似文献   
5.
The blood-brain barrier permeability of the competitive N-methyl-D-aspartate receptor antagonist CGS-19755 [cis-4-(phosphonomethyl)-2-piperidine carboxylic acid] was assessed in normal and ischemic rat brain. The brain uptake index of CGS-19755 relative to iodoantipyrine was assessed using the Oldendorf technique in normal brain. The average brain uptake index in brain regions supplied by the middle cerebral artery was 0.15 +/- 0.35% (mean +/- SEM). The unidirectional clearance of CGS-19755 from plasma across the blood-brain barrier was determined from measurements of the volume of distribution of CGS-19755 in brain. These studies were performed in normal rats and in rats with focal cerebral ischemia produced by combined occlusion of the proximal middle cerebral artery and ipsilateral common carotid artery. In normal rats the regional plasma clearance across the blood-brain barrier was low, averaging 0.015 ml 100 g-1 min-1. In ischemic rats this clearance value averaged 0.019 ml 100 g-1 min-1 in the ischemic hemisphere and 0.009 ml 100 g-1 min-1 in the nonischemic hemisphere. No significant regional differences in plasma clearance of CGS-19755 were observed in either normal or ischemic rats except in cortex injured by electrocautery where a 14-fold increase in clearance across the blood-brain barrier was measured. We conclude that CGS-19755 crosses the blood-brain barrier very slowly, even in acutely ischemic tissue.  相似文献   
6.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   
7.
Abstract: The object of this investigation was to determine whether glutamate uptake affects the apparent potency of the competitive antagonists dl -2-amino-5-phosphonovalerate and CGS-19755 in blocking NMDA receptor-mediated neurotoxicity. In astrocyte-rich rat cortical cultures we observed that dl -2-amino-5-phosphonovalerate and CGS-19755 were 24 and 16 times more potent against NMDA than against glutamate-induced toxicity. In contrast, dl -2-amino-5-phosphonovalerate was equipotent against the two agonists in astrocyte-poor cultures, in which dendrites are directly exposed to the extracellular medium. With the noncompetitive NMDA antagonist MK-801, similar potencies were observed against glutamate (212 ± 16 n M ) and against NMDA (155 ± 9 n M ) neurotoxicity. These results may be explained if we assume that the neuronal cell body is less susceptible than the dendrites to NMDA receptor-mediated toxicity, and that the action of glutamate in astrocyte-rich cultures is confined to the cell body. In this case, one would expect that higher concentrations of glutamate would be needed to produce toxicity in astrocyte-rich cultures, and that higher concentrations of competitive antagonists would be needed to overcome this toxicity. Our observations help explain the pharmacology of the competitive NMDA antagonists against NMDA receptor-mediated neurotoxicity but also suggest the possibility that, because the cell body and dendrites may be distinct sites for neurotoxicity, they might also involve different mechanisms of toxicity.  相似文献   
8.
9.
Endoplasmic reticulum (ER) stress is one of the main molecular events underlying pancreatic beta cell (PBC) failure, apoptosis, and a decrease in insulin secretion. Recent studies have highlighted the fundamental role of A2a adenosine receptor (A2aR) in potentiation of insulin secretion and proliferation of PBCs. However, possible protective effects of A2aR signaling against ER stress have not been elucidated yet. Thus, in the present study, we aimed to investigate the effects of A2aR activation in MIN6 beta cells undergoing tunicamycin (TM)-mediated ER stress. A2aR expression and activity were evaluated using real-time polymerase chain reaction and measurement of the cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), phospho-protein kinase B or Akt (p-Akt)/Akt, and phospho-Cyclic adenosine monophosphate response element-binding protein/CREB levels in response to a specific agonist (CGS 21680). Survival and proliferation in TM and CGS 21680 cotreated cells were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), annexin V–fluorescein isothiocyanate (FITC)/propidium iodide staining, colony formation, and 5-bromo-2′-deoxyuridine (Brdu) assays. In addition, the effects of A2aR stimulation on insulin secretion were evaluated using the enzyme-linked immunosorbent assay. B-cell lymphoma 2 (Bcl-2), phospho-eukaryotic Initiation Factor 2α (p-eIF2α)/eIF2α, growth arrest and DNA-damage-inducible 34 (GADD34), X-box binding protein 1 (XBP-1), spliced X-box binding protein 1 (XBP-1s), immunoglobulin heavy-chain-binding protein (BIP), and CCAAT-enhancer-binding protein homologous protein (CHOP) levels were evaluated using western blotting. Our results showed a decrease in A2aR expression and p-Akt/Akt and p-CREB/CREB levels in TM-pretreated cells. We also mentioned that CGS 21680 effectively increased cell survival, proliferation, and insulin secretion in TM-treated cells. The antiapoptotic effects were possibly mediated through Bcl-2 upregulation. Our western blotting results indicated that A2aR effectively downregulated p-eIF2α/eIF2α, XBP-1, XBP-1s, BIP, and CHOP levels, whereas GADD34 was upregulated. Altogether, the present study revealed that A2aR signaling through PKA/Akt/CREB mediators alleviated TM cytotoxicity effects in MIN6 beta cells. Thus, the stimulation of this receptor was seen as a new approach to control ER stress in the PBC cells.  相似文献   
10.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-microMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. (1)H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5'AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号