首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9511篇
  免费   623篇
  国内免费   303篇
  2024年   18篇
  2023年   152篇
  2022年   181篇
  2021年   269篇
  2020年   257篇
  2019年   343篇
  2018年   360篇
  2017年   215篇
  2016年   251篇
  2015年   265篇
  2014年   536篇
  2013年   694篇
  2012年   365篇
  2011年   518篇
  2010年   425篇
  2009年   449篇
  2008年   495篇
  2007年   554篇
  2006年   467篇
  2005年   476篇
  2004年   389篇
  2003年   356篇
  2002年   283篇
  2001年   181篇
  2000年   172篇
  1999年   202篇
  1998年   173篇
  1997年   181篇
  1996年   138篇
  1995年   123篇
  1994年   91篇
  1993年   106篇
  1992年   79篇
  1991年   56篇
  1990年   59篇
  1989年   44篇
  1988年   60篇
  1987年   47篇
  1986年   27篇
  1985年   40篇
  1984年   61篇
  1983年   36篇
  1982年   48篇
  1981年   39篇
  1980年   32篇
  1979年   30篇
  1978年   19篇
  1977年   22篇
  1976年   15篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(1):112-123.e4
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
2.
Cripto-1 is a protein participating in tissue orientation during embryogenesis but has also been implicated in a wide variety of cancers, such as colon, lung and breast cancer. Cripto-1 plays a role in the regulation of different pathways, including TGF-β/Smad and Wnt/β-catenin, which are highly associated with cell migration both during embryonal development and cancer progression. Little is known about the detailed subcellular localization of cripto-1 and how it participates in the directional movement of cells. In this study, the subcellular localization of cripto-1 in glioblastoma cells was investigated in vitro with high-resolution microscopy techniques. Cripto-1 was found to be localized to dynamic and shed filopodia and transported between cells through tunneling nanotubes. Our results connect the refined subcellular localization of cripto-1 to its functions in cellular orientation and migration.  相似文献   
3.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
4.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   
5.
《Cell reports》2020,30(5):1504-1514.e7
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   
6.
Brown  Patrick H.  Hu  Hening 《Plant and Soil》1997,196(2):211-215
In species in which boron (B) mobility is limited, B deficiency only occurs in growing plant organs. As a consequence of the highly localized patterns of plant growth and the general immobility of B it has been extremely difficult to determine the primary function of B in plants. In species in which B is phloem mobile, the removal of B from the growth medium results in the depletion of B present in mature leaves. Thus, it is possible to develop mature leaves with increasingly severe levels of B depletion, thereby overcoming the complications of experiments based on growing tissues. Utilizing this approach we demonstrate here that B depletion of mature plum (Prunus salicina) leaves did not result in any discernible change in leaf appearance, membrane integrity or photosynthetic capacity even though B concentrations were reduced to 6-8 µg/g dwt, which is less than 30% of the reported tissue B requirement. Boron depletion, however, results in a severe disruption of plant growth and metabolism in young growing tissues. This experimental evidence and theoretical considerations suggest that the primary and possibly sole function of B, is as a structural component of growing tissues.  相似文献   
7.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
8.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   
9.
Heme a was not detected either in mitochondria isolated from copper-deficient yeast or in the intact cells. Nevertheless, the intracellular concentration of free porphyrins indicated that the pathway of porphyrin and heme synthesis was not impaired in copper-deficient cells. The immunoprecipitated apo-oxidase from copper-deficient cells revealed an absorption spectrum with maxima at 645, 592, 559, 519 and 423 nm, similar to that of purified porphyrin a. When solubilized mitochondria from [3H]leucine and δ-amino[14C]levulinic acid-labeled copper-deficient yeast cells were incubated with rabbit antiserum against cytochrome c oxidase, a precipitate was obtained. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of this immunoprecipitate showed [3H]leucine associated with six bands and δ-amino[14C]levulinic acid resolved in a single band. HCl fractionation of copper-deficient mitochondria labeled with δ-amino[14C]levulinic acid showed a high specific radioactivity in the fraction extracted by 20% HCl, a solvent which extracts porphyrin a. Thinlayer chromatography of the radioactivity found in 20% HCl showed an RF value identical to that of purified porphyrin a. When δ-amino[3H]levulinic acid-labeled, copper-deficient yeast cells are grown in copper-supplemented medium, the porphyrin a accumulated in copper-deficient cells wa converted into heme a, and this conversion was prevented by cycloheximidine.These observations suggest that porphyrin a is present in the apo-oxidase of copper-deficient cells, but that the conversion to heme a does not occur. This conversion reaction appears to be a point in the biosynthetic pathway of cytochrome c oxidase which is blocked by copper deficieny.  相似文献   
10.
The CD genome species in the genus Oryza are endemic to Latin America, including O. alta, O. grandiglumis and O. latifolia. Origins and phylogenetic relationship of these species have long been in dispute and are still ambiguous due to their homogeneous genome type, similar morphological characteristics and overlapping distribution. In the present study, we sequenced two chloroplast fragments (matK and trnL-trnF) and portions of three nuclear genes (Adh1, Adh2 and GPA1) from sixteen accessions representing seven species with the C, CD, and E genomes, as well as one G genome species as the outgroup. Phylogenetic analyses using parsimony and distance methods strongly supported that the CD genome originated from a single hybridization event, and that the C genome species (O. officinalis or O. rhizomatis instead of O. eichingeri) served as the maternal parent while the E genome species (O. australiensis) was the paternal donor during the formation of CD genome. In addition, the consistent phylogenetic relationships among the CCDD species indicated that significant divergence existed between O. latifolia and the other two (O. alta and O. grandiglumis), which corroborated the suggestion of treating the latter two as a single species or as taxa within species.We thank Tao Sang of Michigan State University (East Lansing, USA) and Bao-rong Lu of Fudan University (Shanghai, China) for their encouragement and assistance. We are also grateful to the International Rice Research Institute (Manila, Philippines) for providing plant material for this study. This research was supported by the Chinese Academy of Sciences (kscxz-sw-101A), the National Natural Science Foundation of China (30025005) and the Program for Key International S & T Cooperation Project of P. R. China (2001CB711103).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号