首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   7篇
  2007年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.  相似文献   
2.
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation.  相似文献   
3.
Breast cancer remains a substantial clinical problem worldwide, and cancer-associated cachexia is a condition associated with poor prognosis in this and other malignancies. Adipose tissue is involved in the development and progression of cancer-associated cachexia, but its various roles and mechanisms of action are not completely defined, especially as it relates to breast cancer. Interleukin 6 has been implicated in several mechanisms contributing to increased breast cancer tumorigenesis, as well as a net-negative energy balance and cancer-associated cachexia via adipose tissue remodeling in other models of cancer; however, its potential role in breast cancer-associated white adipose browning has not been explored. In this study, we demonstrate localized white adipose tissue browning in a spontaneous model of murine mammary cancer. We then used an in vitro murine adipocyte culture system with the E0771 and 4T1 cell lines as models of breast cancer. We demonstrate that while the E0771 and 4T1 secretomes and cross-talk with white adipocytes alter white adipocyte mRNA expression, they do not directly induce white adipocyte browning. Additionally, we show that neither exogenous administration of interleukin 6 alone or with its soluble receptor directly induce white adipocyte browning. Together, these results demonstrate that neither the E0771 or 4T1 murine breast cancer cell lines, nor interleukin 6, directly cause browning of cultured white adipocytes. This suggests that their roles in adipose tissue remodeling are more complex and indirect in nature.  相似文献   
4.
Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a “signaling protein” under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1?h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.  相似文献   
5.
PCR-analysis, multilocus enzyme electrophoresis and molecular karyotyping were used to characterize 52 strains belonging to the genus Galactomyces. The resultant data revealed that a PCR method employing the universal primer N21 and microsatellite primer (CAC)5 is appropriate for the distinction of four Ga. geotrichum sibling species, Ga. citri-aurantii and Ga. reessii. Better separation was achieved with the UP primer N21; each species displayed a specific pattern with very low intraspecific variation. We propose to use the primer N21 for the differentiation of the six taxa composing the genus Galactomyces. Multilocus enzyme electrophoresis revealed genetic homogeneity of each sibling species within the Ga. geotrichum complex. On the other hand, the four sibling species, having from 41 to 59% of nDNA homology and similar phenotypic characteristics, are clearly distinguished based on their electrophoretic profiles using two enzymes: mannose-6-phosphate isomerase (MPI) and phosphoglucomutase (PGM). Despite the same number of chromosomal bands, different karyotype patterns were found in Ga. geotrichum sensu stricto and its two sibling species A and B. Within each sibling species, chromosome length polymorphism was observed, in particular for small bands, allowing discrimination to the strain level.  相似文献   
6.
Continuous chromatographic separations, especially of multicomponent mixtures, constitute interesting options for biotechnological downstream processing. Taking the separation of plasmid DNA from clearified lysates on hydroxyapatite as a pertinent example, we discuss the potential of continuous annular chromatography (CAC) in comparison with conventional (preparative) batch chromatography. In CAC the column is realized in the form of a thin (5 mm, height 210 mm) slowly rotating annulus. The performance of such a CAC column is compared to that of an ("analytical") batch column of similar thickness (diameter) and length (4 x 250 mm) and that of a ("preparative") batch column of similar cross-sectional surface area and height (50 x 210 mm). The quality of the obtained plasmid as defined by the appearance of the corresponding agarose gels (native and linearized plasmid), the 260/280 ratio and the biological activity (transient transfection of HEK 293 cells) was found to be identical in all three cases. The yields are also shown to be equivalent. The loading factor is found to be the most decisive parameter for the transfer of a given separation method between the continuous and the batch columns. Under nonoptimized conditions, plate numbers tended to be lower in the continuous compared to the batch columns. This is shown to be largely due to an artifact created by the CAC design (collection of averaged fractions at the outlets) and can be overcome by optimizing the rotation speed. Surprisingly the large batch column consistently gave better plate numbers than either the small batch or the CAC column. Compared to the preparative batch column, wall effects are more pronounced in the CAC (respectively the small diameter batch column), which may translate into better bed stability but conceivably also contributes to an increase in plate height, due to the reduction in bed density usually observed in the proximity of the wall. The CAC is shown to be a powerful approach to continuous chromatography, which allows a direct and straightforward upscale of chromatographic bioseparation methods.  相似文献   
7.
Tau is a microtubule associated protein whose aggregation is implicated in a number of neurodegenerative diseases. We investigate the mechanism by which anionic lipid vesicles induce aggregation of tau in vitro using K18, a fragment of tau corresponding to the four repeats of the microtubule binding domain. Our results show that aggregation occurs when the amount of K18 bound to the lipid bilayer exceeds a critical surface density. The ratio of protein/lipid at the critical aggregation concentration is pH-dependent, as is the binding affinity. At low pH, where the protein binds with high affinity, the critical surface density is independent both of total lipid concentration as well as the fraction of anionic lipid present in the bilayer. Furthermore, the aggregates consist of both protein and vesicles and bind the β-sheet specific dye, Thioflavin T, in the manner characteristic of pathological aggregates. Our results suggest that the lipid bilayer facilitates protein-protein interactions both by screening charges on the protein and by increasing the local protein concentration, resulting in rapid aggregation. Because anionic lipids are abundant in cellular membranes, these findings contribute to understanding tau-lipid bilayer interactions that may be relevant to disease pathology.  相似文献   
8.
The oligo-acyl-lysyl, C12(ω7)K-β12, is comprised of only three Lys residues. Despite its small size, it exhibits potent bacteriostatic activity against Gram-positive bacteria, but it is ∼10-fold less potent against Gram-negative bacteria. We followed the interactions of C12(ω7)K-β12 from its initial contact with the bacterial surface across the cell wall down to the cytoplasmic membrane. Binding to anionic lipids, as well as to negatively charged LPS and LTA, occurs with very high affinity. The C12(ω7)K-β12 does not cross the outer membrane of Gram-negative bacteria; rather, it achieves its action by depositing on the LPS layer, promoting surface adhesion and blocking passage of solutes. In Gram-positive bacteria, the thick peptidoglycan layer containing LTA allows passage of C12(ω7)K-β12 and promotes its accumulation in the small periplasm. From that location it is then driven to the membrane by strong electrostatic interactions. Despite its high potency against Gram-positive bacteria, this agent is not capable of efficiently breaking down the permeability barrier of the cytoplasmic membrane or of reaching an intracellular target, as suggested by the fact that it does not interact with DNA.  相似文献   
9.
This study analyzed the chemical and physical properties of a biosurfactant synthesized by Rhodococcus sp. 51T7. The biosurfactant was a trehalose tetraester (THL) consisting of six components: one major and five minor. The hydrophobic moieties ranged in size from 9 to 11 carbons. The critical micelle concentration (CMC) was 0.037 g L−1 and the interfacial tension against hexadecane was 5 mN m−1. At pH 7.4 the glycolipid CMC/critical aggregation concentration (CAC) was 0.05 g L−1 and at pH 4 it was 0.034 g L−1. A phase diagram revealed effective emulsification with water and paraffin or isopropyl myristate. A composition of 11.3-7.5-81.8 (isopropyl myristate-THL-W) was stable for at least 3 months. The HLB was 11 and the phase behaviour of the glycolipid revealed the formation of lamellar and hexagonal liquid-crystalline textures.  相似文献   
10.
α-Synuclein (α-syn) is a 140-residue protein of unknown function, involved in several neurodegenerative disorders, such as Parkinson's disease. Recently, the possible interaction between α-syn and polyunsaturated fatty acids has attracted a strong interest. Indeed, lipids are able to trigger the multimerization of the protein in vitro and in cultured cells. Docosahexaenoic acid (DHA) is one of the main fatty acids (FAs) in cerebral gray matter and is dynamically released following phospholipid hydrolysis. Moreover, it has been found in high levels in brain areas containing α-syn inclusions in patients affected by Parkinson's disease. Debated and unsolved questions regard the nature of the molecular interaction between α-syn and DHA and the effect exerted by the protein on the aggregated state of the FA. Here, we show that α-syn is able to strongly interact with DHA and that a mutual effect on the structure of the protein and on the physical state of the lipid derives from this interaction. α-Syn acquires an α-helical conformation in a simple two-state transition. The binding of the protein to the FA leads to a reduction of the size of the spontaneously formed aggregated species of DHA as well as of the critical aggregate concentration of the lipid. Specifically, biophysical methods and electron microscopy observations indicated that the FA forms oil droplets in the presence of α-syn. Limited proteolysis experiments showed that, when the protein is bound to the FA oil droplets, it is initially cleaved in the 89-102 region, suggesting that this chain segment is sufficiently flexible or unfolded to be protease-sensitive. Subsequent proteolytic events produce fragments corresponding to the first 70-80 residues that remain structured and show high affinity for the lipid. The fact that a region of the polypeptide chain remains accessible to proteases, when interacting with the lipid, suggests that this region could be involved in other interactions, justifying the ambivalent propensity of α-syn towards folding or aggregation in the presence of FAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号