首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2023年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.  相似文献   
2.
Botulinum neurotoxin Type A is synthesized byClostridium botulinum as a 150 kD single chain polypeptide. The posttranslational processing of the 1296 amino acid residue long gene product involves removal of the initiating methionine, formation of disulfide bridges, and limited proteolysis (nicking) by the bacterial protease(s). The mature dichain neurotoxin is made of a 50-kD light chain and a 100-kD heavy chain connected by a disulfide bridge. DNA derived amino acid sequencepredicted a total of 9 Cys residues (Binzet al., 1990,J. Biol. Chem. 265, 9153–9158; Thompsonet al., 1990,Eur. J. Biochem. 189, 73–81). Treatment of the dichain neurotoxin, dissolved in 6 M guanidine. HCl, with 4-vinylpyridine converted 5 Cys residues into S-pyridylethyl cysteine residues; but alkylation after mercaptolysis converted all 9 Cys residues in the S-pyridylethylated form. After confirming the predicted number of Cys residues by amino acid analysis, the positions of the 5 Cys residues carrying sulfhydryl groups and the 4 involved in disulfide bridges were determined by comparing the elution patterns in reversed-phase HPLC of the cyanogen bromide mixtures of the exclusively alkylated and the mercaptolyzed-alkylated neurotoxin. The chromatographically isolated components were identified by N-terminal amino acid sequence analysis. The HPLC patterns showed characteristic differences. The Cys residuespredicted in positions 133, 164, 790, 966, and 1059 were found in the sulfhydryl form; Cys 429 and 453 were found disulfide-bridged connecting the light and heavy chains, and Cys 1234 and 1279 were found in an intrachain disulfide-bridge near the C-terminus in the heavy chain. Ten amino acid residues, Thr 438-Lys 447,predicted to be present in the single chain neurotoxin were not found in the dichain neurotoxin. Nicking of single-chain neurotoxin by the protease(s) endogenous to the bacteria therefore appears to excise these 10 amino acid residues from the nicking region which leaves Lys 437 as the C-terminus of the light chain and Ala 448 as the N-terminus of the heavy chain. The N-terminal Pro 1 and C-terminal Leu 1295,predicted from the nucleotide sequence, remain conserved after nicking. Residues Pro 1-Lys 437 and Ala 448-Leu 1295 constitute the light and heavy chains, respectively. The C-termini were determined by isolation of short C-terminal peptide fragments and subsequent sequence analysis by Edman degradation. About 20% of the amino acid sequence predicted from DNA analysis was confirmed in these studies by protein-chemical methods.  相似文献   
3.
Botulinum neurotoxin (NT) serotype E is synthesized by Clostridium botulinum as an 150-kDa single-chain polypeptide of 1252 amino acid residues of which 8 are Cys residues [Puolet et al. (1992), Biochem. Biophys. Res. Commun. 183, 107–113]. The posttranslational processing of the gene product removes only the initiating methionine. A very narrow segment of this 1251-residue-long mature protein—at one-third the distance from the N-terminus (between residues Lys 418 and Arg 421)—is highly sensitive to proteases, such as trypsin. The single-chain NT easily undergoes an exogenous posttranslational modification by trypsin; residues 419–421 (Gly–Ile–Arg) are excised. The proteolytically processed NT is a dichain protein in which Pro 1–Lys 418 constitute the 50–kDa light chain, Lys 422–Lys 1251 constitute the 100–kDa heavy chain; Cys 411–Cys 425 and Cys 1196–Cys 1237 form the interchain and intrachain disulfide bonds, respectively; the other four Cys residues at positions 25, 346, 941, and 1035 remain as free sulfhydryl groups. The 150–kDa dichain NT, and separated light and heavy chains, were fragmented with CNBr and endoproteases (pepsin and clostripain); some of these fragments were carboxymethylated with iodoacetamide (with or without I4C label) before and after fragmentation. The fragments were separated and analyzed for amino acid compositions and sequences by Edman degradation to determine the complete covalent structure of the dichain type E NT. A total of 208 amino acid residues, i.e., 16.5% of the entire protein's sequence deduced from nucleotide sequence, was identified. Direct chemical identification of these amino acids was in complete agreement with that deduced from nucleotide sequence.  相似文献   
4.
Botulinum neurotoxin (NT) serotype B, produced by Clostridium botulinum (proteolytic strain), is a 150-kDa single-chain polypeptide of 1291 amino acids, of which 10 are Cys residues [Whelan et al. (1992), Appl. Environ. Microbiol. 58, 2345–2354] The posttranslational modifications of the gene product were found to consist of excision of only the initiating Met residue, limited proteolysis (nicking) of the 1290-residue-long protein between Lys 440 and Ala 441, and formation of at least one disulflde bridge. The dichain (nicked) protein, in a mixture with the precursor single-chain (unnicked) molecules, was found to have a 50-kDa light chain (Pro 1 through Lys 440) and a 100-kDa heavy chain (Ala 441 through Glu 1290). The limited in vivo nicking of the single-chain NT to the dichain form, by protease endogenous to the bacteria, and the nonfacile in vitro cleavage by trypsin of the Lys 440–Ala 441 bond appear to be due to the adjacent Ala 441–Pro 442 imide bond's probable cis configuration in a mixed population of molecules with cis and trans configurations. The two chains were found connected by an interchain disulfide formed by Cys 436 and Cys 445. Six other Cys residues, at positions 70, 195, 308, 777, 954, and 1277, were found in sulfhydryl form. In addition, a Cys at position 1220 or 1257 appeared to be in sulfhydryl form, hence our experimental results could not unambiguously identify presence of an intrachain disulfide bridge near the C-terminus of the NT. A total of 384 amino acid residues, including the 6 Cys residues at positions 70, 195, 308, 436, 445, and 1277, were identified by direct protein-chemical analysis; thus 29.7% of the protein's entire amino acid sequence predicted from the nucleotide sequence was confirmed. The 6 amino acids, residues 945–950, did not match with the sequence predicted in 1992, but did match with a later report of 1995. The above determinations were made by a combination of chemical (CNBr and acidic cleavage at Asp–Pro) and enzymatic (trypsin, clostripain, and pepsin) cleavages of the NT, and NT carboxymethylated with iodoacetamide (with or without 14C label), separation and isolation of the fragments by SDS–PAGE (followed by electroblotting onto PVDF membrane), and/or reversed-phase HPLC, and analyses of the fragments for the N-terminal amino acid sequences by Edman degradation and amino acid compositions.  相似文献   
5.
Rui Wang  Zhongjie Wang  Haojie Lu 《Proteomics》2023,23(3-4):2100374
Protein N- and C-termini have specific biochemical properties and functions. They play vital roles in various biological processes, such as protein stability and localization. In addition, post-translational modifications and proteolytic processing generate different proteoforms at protein termini. In recent years, terminomics has attracted significant attention, and numerous strategies have been developed to achieve high-throughput and global terminomics analysis. This review summarizes the recent protein N-termini and C-termini enrichment methods and their application in different samples. We also look ahead further application of terminomics in profiling protease substrates and discovery of disease biomarkers and therapeutic targets.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号