首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  1996年   1篇
  1995年   1篇
  1980年   1篇
排序方式: 共有8条查询结果,搜索用时 140 毫秒
1
1.
Evidence from ventricular preparations of cat, sheep, rat and dog suggests that both 1-adrenoceptors (1AR) and 2-adrenoceptors (2AR) mediate positive inotropic effects but that only 1AR do it through activation of a cAMP pathway. On the other hand, our evidence has shown that both 1 AR and 2 AR hasten relaxation of isolated human myocardium consistent with a common cAMP pathway. We have now investigated in the isolated human right atrial appendage, a tissue whose -AR comprise around 2/3 of 1AR and 1/3 of 2AR, whether or not 2AR-mediated effects occur via activation of a cAMP pathway. We carried out experiments on atria obtained from patients without advanced heart failure undergoing open heart surgery. To activate 2AR, we used the 2AR-selective ligand zinterol. Experiments were carried out on paced atrial strips (1 Hz) and tissue homogenates and membrane particles. Zinterol caused positive inotropic and lusitropic (i.e. reduction of t1:2 of relaxation) effects with EC50 values of 3 and 2 nM, respectively. The zinterol-evoked effects were unaffected by the AR-selective antagonist CGP 20712A (300 nM) but blocked surmountably by the 2AR-selective antagonist ICI 118551 (50 nM) which reduced both EC50 values to 1 M. Zinterol stimulated adenylyl cyclase activity with an EC50 of 30 nM and intrinsic activity of 0.75 with respect to (–)-isoprenaline (600 M); the effects were resistant to blockade by CGP 20712A (300 nM) but antagonised surmountably by ICI 118551 (50 nM). Zinterol bound to membrane PAR labelled with (–)-[125I] cyanopindolol with higher affinity for 2AR than for - 1 AR; the binding to 2AR but not to - BAR was reduced by GTPyS (10 M). In the presence of CGP 20712A (300 nM) (–)-isoprenaline (400 M); (to activate both 1AR and 2AR maximally) and zinterol (10 M); increased contractile force 3.4-fold and 2.5-fold respectively and reduced relaxation tut by 32% and 18% respectively. These effects of (–)-isoprenaline and zinterol were associated (5 min incubation) with phosphorylation (pmol P/mg supernatant protein) of troponin I and C-protein to values of 8.4 ± 2.0 vs 12.4 ± 2.3 and 10.1 ± 2.5 vs 8.6 ± 1.6 respectively. (–)-Isoprenaline and zinterol also caused phosphorylation of phospholamban (1.8 ± 0.3 vs 0.4 ± 0.1 pmol P/mg respectively) specifically at serine residues. We conclude that in human atrial myocardium activation of both 1AR and 2AR leads to cAMP-dependent phosphorylation of proteins involved in augmenting both contractility and relaxation.  相似文献   
2.
The N-terminal domains of cardiac myosin binding protein C (MyBP-C) play a regulatory role in modulating interactions between myosin and actin during heart muscle contraction. Using NMR spectroscopy and small-angle neutron scattering, we have determined specific details of the interaction between the two-module human C0C1 cMyBP-C fragment and F-actin. The small-angle neutron scattering data show that C0C1 spontaneously polymerizes monomeric actin (G-actin) to form regular assemblies composed of filamentous actin (F-actin) cores decorated by C0C1, similar to what was reported in our earlier four-module mouse cMyBP-C actin study. In addition, NMR titration analyses show large intensity changes for a subset of C0C1 peaks upon addition of G-actin, indicating that human C0C1 interacts specifically with actin and promotes its assembly into filaments. During the NMR titration, peaks corresponding to cardiac-specific C0 domain are the first to be affected, followed by those from the C1 domain. No peak intensity or position changes were detected for peaks arising from the disordered proline/alanine-rich (P/A) linker connecting C0 with C1, despite previous suggestions of its involvement in binding actin. Of considerable interest is the observation that the actin-interaction “hot-spots” within the C0 and C1 domains, revealed in our NMR study, overlap with regions previously identified as binding to the regulatory light chain of myosin and to myosin ΔS2. Our results suggest that C0 and C1 interact with myosin and actin using a common set of binding determinants and therefore support a cMyBP-C switching mechanism between myosin and actin.  相似文献   
3.
The nucleotide sequence was established for the operon of the Sse9I type II restriction-modification system of Sporosarcina species 9D. The enzymes of the Sse9I system recognize the 5′-AATT-3′ tetranucleotide. The operon includes three genes, sse9IC-sse9IR-sse9IM, which are transcribed unidirectionally and code, respectively, for the controller protein (C.Sse9I), restriction endonuclease (R.Sse9I), and DNA methyltransferase (M.Sse9I). The region immediately upstream of sse9IC was found to contain a conserved nucleotide sequence (C box) providing a binding site for C. Sse9I. The amino acid sequences of C.Sse9I and R.Sse9I were compared with those of related proteins. In the case of R.Sse9I, the highest homology was observed with the R.MunI (5′-CAATTG-3′) and R.EcoRI (5′-GAATTC-3′) regions that harbor the amino acid residues involved in recognizing the AATT inner tetranucleotide. The sse9IR gene was cloned in an expression vector, and recombinant R.Sse 9I was isolated.  相似文献   
4.
The effect of C-protein on the actin-activated ATPase of column-purified skeletal muscle myosin has been investigated at varied ionic strength. At ionic strengths below about 0.1, C-protein is a potent inhibitor. The inhibition is not reversed by increasing the actin concentration, showing that it is caused by C-protein bound to the myosin filaments. When the ionic strength is raised above about 0.12, on the other hand, the inhibition vanishes and C-protein becomes a mild activator of the actomyosin ATPase. Both effects appear rapidly upon addition of C-protein to pre-formed myosin filaments, so C-protein probably acts by binding to the surface of the filaments.  相似文献   
5.
A comparative study was made of the extent of phosphorylation of myosin regulatory light chains and C-protein from the left ventricle of the hibernant ground squirrel Citellus undulatus during the periods of hibernation and activity. During hibernation, the light chains were found to be completely dephosphorylated. In active animals, the share of phosphorylated light chains averaged 40–45%. The extent of cardiac C-protein phosphorylation in hibernation was about twice higher than in the active state. Seasonal differences in phosphorylation of the two proteins of ground squirrel myocardium are discussed in the context of adaptation to hibernation.  相似文献   
6.
Previous low-angle X-ray diffraction studies of various vertebrate skeletal muscles have shown the presence of two rich layer-line patterns, one from the myosin heads and based on a 429 A axial repeat, and one from actin filaments and based on a repeat of about 360-370 A. In addition, meridional intensities have been seen from C-protein (MyBP-C; at about 440 A and its higher orders) and troponin (at about 385 A and its orders). Using preparations of intact, relaxed, bony fish fin muscles and the ID-02 low-angle X-ray camera at the ESRF with a 10 m camera length we have now seen numerous, hitherto unreported, sampled, X-ray layer-lines many of which do not fit onto the previously observed repeats and which require interpretation. The new reflections all fall on the normal ("vertical") hexagonal lattice row-lines in the highly sampled, almost "crystalline", low-angle diffraction X-ray patterns from bony fish muscle, indicating that they all arise from the muscle A-band. However, they do not fall on a single axial repeat. In direct confirmation of our previous analysis, some of these new reflections are explained by the interaction in resting muscle between the N-terminal ends of myosin-bound C-protein molecules with adjacent actin filaments, possibly through the Pro-Ala-rich region. Other newly observed reflections lie on a much longer repeat, but they are most easily interpreted in terms of the arrangement of troponin on the actin filaments. If this is so, then the implication is that the actin filaments and their troponin complexes are systematically arranged in the fish muscle A-band lattice relative to the myosin head positions, and that these newly observed X-ray reflections, when fully analysed, will report on the shape and distribution of troponin molecules in the resting muscle A-band. The less certain contributions of titin and nebulin to these new reflections have also been tested and are described. Many of the new reflections do not appear to come from these known structures. There must be structural features of the A-band that have not yet been described.  相似文献   
7.
Of the several proteins located within sarcomeric A-bands, C-protein, a myosin binding protein (MyBP) is thought to regulate and stabilize thick filaments during assembly. This paper reports the characterization of C-protein isoforms in juvenile and adult axolotls, Ambystoma mexicanum, by means of immunofluorescent microscopy and Western blot analyses. C-protein and myosin are found specifically within the A-bands, whereas tropomyosin and -actin are detected in the I-bands of axolotl myofibrils. The MF1 antibody prepared against the fast skeletal muscle isoform of chicken C-protein specifically recognizes a cardiac isoform (Axcard1) in juvenile and adult axolotls but does not label axolotl skeletal muscle. The ALD66 antibody, which reacts with the C-protein slow isoform in chicken, localizes only in skeletal muscle of the axolotl. This slow axolotl isoform (Axslow) displays a heterogeneous distribution in fibers of dorsalis trunci skeletal muscle. The C315 antibody against the chicken C-protein cardiac isoform identifies a second axolotl cardiac isoform (Axcard2), which is present also in axolotl skeletal muscle. No C-protein was detected in smooth muscle of the juvenile and adult axolotl with these antibodies.This work was supported by NIH grants HL-32184 and HL-37702 and a grant-in-aid from the American Heart Association to L.F.L.  相似文献   
8.
The role of cardiac myosin binding protein-C (MyBP-C) on myocardial stiffness was examined in skinned papillary muscles of wild-type (WT+/+) and homozygous truncated cardiac MyBP-C (MyBP-Ct/t) male mice. No MyBP-C was detected by gel electrophoresis or by Western blots in the MyBP-Ct/t myocardium. Rigor-bridge dependent myofilament stiffness, i.e., rigor minus relaxed stiffness, in the MyBP-Ct/t myocardium (281 ± 44 kN/m2) was 44% that in WT+/+ (633 ± 141 kN/m2). The center-to-center spacing between thick filaments as determined by X-ray diffraction in MyBP-Ct/t (45.0 ± 1.2 nm) was not significantly different from that in WT+/+ (43.2 ± 0.9 nm). The fraction of cross-sectional area comprised of myofibrils, as determined by electron microscopy, was reduced in the MyBP-Ct/t (39.9%) by 10% compared to WT+/+ (44.5%). These data suggest that the 56% reduction in rigor-bridge dependent stiffness of the skinned MyBP-Ct/t myocardium could not be due solely to a 10% reduction in the number of thick filaments per cross-sectional area and must also be due to approximately 50% reduction in the stiffness of the rigor-bridge attached thick filaments lacking MyBP-C. (Mol Cell Biochem 263: 73–80, 2004)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号