首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  1996年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.

Background

Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined γ-irradiation-induced ATP release and its mechanism in B16 melanoma.

Methods

Extracellular ATP was measured by luciferin–luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X7 receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X7 receptor.

Results

Cells were exposed to 0.5–8 Gy of γ-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X7 receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X7 receptor-knockdown cells. Our results indicate that γ-irradiation evokes ATP release from melanoma cells, and P2X7 receptor channel plays a significant role in mediating the ATP release.

General Significance

We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.  相似文献   
2.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   
3.
In this study, we examined the response of glioma C6 cells to 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) and showed that the BzATP-induced calcium signaling does not involve the P2X7 receptor activity. We show here that in the absence of extracellular Ca2+, BzATP-generated increase in [Ca2+]i via Ca2+ release from intracellular stores. In the presence of calcium ions, BzATP established a biphasic Ca2+ response, in a manner typical for P2Y receptors. Brilliant Blue G, a selective antagonist of the rat P2X7 receptor, did not reduce any of the two components of the Ca2+ response elicited by BzATP. Periodate-oxidized ATP blocked not only BzATP- but also UTP-induced Ca2+ elevation. Moreover, BzATP did not open large transmembrane pores. What is more, a cross-desensitization between UTP and BzATP occurred, which clearly shows that in glioma C6 cells BzATP activates most likely the P2Y2 but not the P2X7 receptors.  相似文献   
4.
Human P2X7 receptors (hP2X7Rs) belong to the P2X family, which opens an intrinsic cation channel when challenged by extracellular ATP. hP2X7Rs are expressed in cells of the inflammatory and immune system. During inflammation, ATP and protons are secreted into the interstitial fluid. Therefore, we investigated the effect of protons on the activation of hP2X7Rs. hP2X7Rs were expressed in Xenopus laevis oocytes and activated by the agonists ATP or benzoyl-benzoyl-ATP (BzATP) at different pH values. The protons reduced the hP2X7R-dependent cation current amplitude and slowed the current deactivation depending on the type and concentration of the agonist used. These effects can be explained by (i) the protonation of ATP, which reduces the effective concentration of the agonist ATP4− at the high- and low-affinity ATP activation site of the hP2XR, and (ii) direct allosteric inhibition of the hP2X7R channel opening that follows ATP4− binding to the low-affinity activation site. Due to the hampered activation via the low-affinity activation site, a low pH (as observed in inflamed tissues) leads to a relative increase in the contribution of the high-affinity activation site for hP2X7R channel opening.  相似文献   
5.
Pannexin1 is a prime candidate to represent an ATP release channel. The pannexin1 channel can be activated by extracellular ATP through purinergic receptors P2X7 or P2Y. Recent studies have shown that the Pannexin1 channel is inhibited by its own permeant ion, ATP, and also by P2X7 receptor agonists and antagonists. However, the dose dependence of this inhibition indicated that significant inhibition was prominent at ATP concentrations higher than required for activation of purinergic receptors, including P2X7 and P2Y2. The inhibitory effect of ATP is largely decreased when R75 in the first extracellular loop of Pannexin1 is mutated to alanine, indicating that ATP regulates this channel presumably through binding. To further investigate the structural property of the putative ATP binding site, we performed alanine-scanning mutagenesis of the extracellular loops of pannexin1. Mutations on W74, S237, S240, I247 and L266 in the extracellular loops 1 and 2 severely impaired the inhibitory effect of BzATP, indicating that they might be the essential amino acids in the putative binding site. Mutations on R75, S82, S93, L94, D241, S249, P259 and I267 moderately (≥50%) decreased BzATP sensitivity, suggesting their supporting roles in the binding. Mutations of other residues did not change the BzATP potency compared to wild-type except for some nonfunctional mutants. These data demonstrate that several amino acid residues on the extracellular loops of Pannexin1 mediate ATP sensitivity. Cells expressing mutant Panx1W74A exhibited an enhanced release of ATP, consistent with the removal of a negative feedback loop controlling ATP release.  相似文献   
6.
To investigate fast purinergic signaling in invertebrates, we examined the functional properties of a P2X receptor subunit cloned from the parasitic platyhelminth Schistosoma mansoni. This purinoceptor (SmP2X) displays unambiguous homology of primary sequence with vertebrate P2X subunits. SmP2X subunits assemble into homomeric ATP-gated channels that exhibit slow activation kinetics and are blocked by suramin and PPADS but not TNP-ATP. SmP2X mediates the uptake of the dye YO-PRO-1 through the formation of large pores and can be blocked by submicromolar concentrations of extracellular Zn2+ ions (IC50=0.4 μM). The unique receptor phenotype defined by SmP2X suggests that slow kinetics, modulation by zinc and the ability to form large pores are ancestral properties of P2X receptors. The high sensitivity of SmP2X to zinc further reveals a zinc regulation requirement for the parasite's physiology that could potentially be exploited for therapeutic purposes.  相似文献   
7.
Microglia, the CNS resident macrophages responsible for the clearance of degenerating cellular fragments, are essential to tissue remodeling and repair after CNS injury. ATP can be released in large amounts after CNS injury and may mediate microglial activity through the ionotropic P2X and the metabotropic P2Y receptors. This study indicates that exposure to a high concentration of ATP for 30 min rapidly induces changes of the microglial cytoskeleton, and significantly attenuates microglial phagocytosis. A pharmacological approach showed that ATP-induced inhibition of microglial phagocytotic activity was due to P2X7R activation, rather than that of P2YR. Activation of P2X7R by its agonist, 2'-3'- O -(4-benzoyl)benzoyl-ATP (BzATP), produced a Ca2+-independent reduction in microglial phagocytotic activity. In addition, the knockdown of P2X7R expression by lentiviral-mediated shRNA interference or the blockade of P2X7R activation by the specific antagonists, oxidized ATP (oxATP) and brilliant blue G, has efficiently restored the phagocytotic activity of ATP and BzATP-treated microglia. Our results reveal that P2X7R activation may induce the formation of a Ca2+-independent signaling complex, which results in the reduction of microglial phagocytosis. This suggests that exposure to ATP for a short-term period may cause insufficient clearance of tissue debris by microglia through P2X7R activation after CNS injury, and that blockade of this receptor may preserve the phagocytosis of microglia and facilitate CNS tissue repair.  相似文献   
8.
We previously observed that activation of presynaptic P2X7 receptors located on rat cerebrocortical nerve terminals induced the release of glutamate through different modes: the channel conformation allowing Ca(2+) entry triggered exocytotic release, while the receptor itself functioned as a permeation pathway for the non-exocytotic glutamate release. Considering that exocytotic and non-exocytotic glutamate release evoked by the activation of P2X7 receptors might play a role in the control of glutamatergic synapses, we investigated whether calmidazolium (which has been found to inhibit small cation currents through recombinant P2X7 receptors, but not organic molecule permeation) could distinguish between P2X7-related exocytotic and non-exocytotic modes of glutamate release. We found that calmidazolium inhibited the intrasynaptosomal Ca(2+) response to P2X7 receptor activation and the Ca(2+)-dependent exocytotic glutamate release from rat cerebrocortical nerve terminals, but was ineffective against the Ca(2+)-independent glutamate release. The P2X7 competitive antagonist A-438079 eliminated both exocytotic and non-exocytotic P2X7 receptor-evoked glutamate release. Selective inhibition of exocytotic glutamate release indicates that calmidazolium inhibits events dependent on the function of native rat P2X7 receptors as Ca(2+) channels, and suggests that it can be used as a tool to dissociate P2X7-evoked exocytotic from non-exocytotic glutamate release.  相似文献   
9.
Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR, immunoblotting and immunofluorescence staining demonstrated the presence of P2X7 in MEL cells. Cytofluorometric measurements demonstrated that ATP induced ethidium+ uptake into MEL cells in a concentration-dependent fashion and with an EC50 of ∼ 154 μM. The most potent P2X7 agonist 2′- and 3′-0(4-benzoylbenzoyl) ATP, but not ADP or UTP, induced ethidium+ uptake. ATP-induced ethidium+ and YO-PRO-12+ uptake were impaired by the P2X7 antagonist, A-438079. A colourmetric assay demonstrated that ATP impaired MEL cell growth. A cytofluorometric assay showed that ATP induced MEL cell death and that this process was impaired by A-438079. Finally, cytofluorometric measurements of Annexin-V binding and bio-maleimide staining demonstrated that ATP could induce rapid phosphatidylserine exposure and microparticle release in MEL cells respectively, both of which were impaired by A-438079. These results demonstrate that MEL cells express functional P2X7, and indicate that activation of this receptor may be important in the death and release of microparticles from red blood cells in vivo.  相似文献   
10.
The effect of ATP on mitochondrial membrane depolarization in rat submandibular glands was investigated. Exposure of the cell suspension to high concentrations of ATP induced a sustained depolarization of mitochondrial membrane. This effect was blocked in the presence of magnesium and reproduced by low concentrations of 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP), suggesting the implication of the P2X(7) purinergic receptor. This point was confirmed by comparison of the response to ATP by wild-type and P2X(7) knock-out (P2X(7)R(-/-)) mice. Mitochondria took up calcium after ATP stimulation but the depolarization of the mitochondrial membrane by ATP was not affected by the removal of calcium from the extracellular medium. It was nearly fully suppressed in the absence of sodium and partially blocked by the mitochondrial Na/Ca exchanger inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157). Both ATP and monensin increased the uptake of extracellular sodium (as shown by the depolarization of the plasma membrane) but the sodium ionophore did not affect the mitochondrial membrane potential. It is concluded that the activation of P2X(7) receptors depolarizes the mitochondrial membrane. The uptake of extracellular sodium is necessary but not sufficient to induce this response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号