首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   22篇
  国内免费   37篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   11篇
  2018年   8篇
  2017年   12篇
  2016年   13篇
  2015年   16篇
  2014年   13篇
  2013年   25篇
  2012年   10篇
  2011年   24篇
  2010年   15篇
  2009年   21篇
  2008年   42篇
  2007年   21篇
  2006年   19篇
  2005年   28篇
  2004年   13篇
  2003年   23篇
  2002年   15篇
  2001年   14篇
  2000年   12篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
1.
Abstract Burkholderia cepacia has emerged as an important multiresistant pathogen in cystic fibrosis (CF), associated in 20% of colonised patients with a rapid and fatal decline in lung function. Although knowledge of B. cepacia epidemiology has improved, the mechanisms involved in pathogenesis remain obscure. In this study, B. cepacia lipopolysaccharide (LPS) was assessed for endotoxic potential and the capacity to induce tumour necrosis factor (TNF). LPS preparations from clinical and environmental isolates of B. cepacia and from the closely related species Burkholderia gladioli exhibited a higher endotoxic activity and more pronounced cytokine response in vitro compared to preparations from the major CF pathogen Pseudomonas aeruginosa . This study may help to explain the vicious host immune response observed during pulmonary exacerbations in CF patients colonised by B. cepacia and lead to therapeutic advances in clinical management.  相似文献   
2.
Genomic complexity and plasticity of Burkholderia cepacia   总被引:6,自引:1,他引:5  
Abstract Burkholderia cepacia has attracted attention because of its extraordinary degradative abilities and its potential as a pathogen for plants and for humans. This bacterium was formerly considered to belong to the genus Pseudomonas in the γ-subclass of the Proteobacteria , but recently has been assigned to the β-subclass based on rrn gene sequence analyses and other key phenotypic characteristics. The B. cepacia genome is comprised of multiple chromosomes and is rich in insertion sequences. These two features may have played a key role in the evolution of novel degradative functions and the unusual adaptability of this bacterium.  相似文献   
3.
Abstract Water flow-innduced transport of Burkholderia cepacia strain P2 and Pseudomonas fluorescens strain R2f cells through intact cores of loamy sand and silt loam field soils was measured for two percolation regimes, 0.9 and 4.4 mm h−1, applied daily during 1 hour. For each strain, transport was generally similar between the two water regimes. Translocation of B. cepacia , with 4.4 mm h−1, did occur initially in both soils. In the loamy sand soil, no change in the bacterial distribution occurred during the experiment (51 days). In the silt loam, B. cepacia cell numbers in the lower soil layers were significantly reduced, to levels at or below the limit of detection. Transport of P. fluorescens in both soils also occurred initially and was comparable to that of B. cepacia . Later in the experiment, P. fluorescens was not detectable in the lower soil layers of the loamy sand cores, due to a large decrease in surviving cell numbers. In the silt loam, the inoculant cell distribution did not change with time. Pre-incubation of the inoculated cores before starting percolation reduced B. cepacia inoculant transport in the loamy sand soil measured after 5 days, but not that determined after 54 days. Delayed percolation in the silt loam soil affected bacterial transport only after 54 days. The presence of growing wheat plants overall enhanced bacterial translocation as compared to that in unplanted soil cores, but only with percolating water. Percolation water from silt loam cores appeared the day after the onset of percolation and often contained inoculant bacteria. With loamy sand, percolation water appeared only 5 days after the start of percolation, and no inoculant bacteria were found. The results presented aid in predicting the fate of genetically manipulated bacteria in a field experiment.  相似文献   
4.
将解淀粉芽孢杆菌(YB706)和伯克氏菌(BK8)外源添加至木麻黄盆栽苗中,运用Biolog生态板和磷脂脂肪酸(PLFA)技术,探究外施细菌能否改善连栽木麻黄土壤养分和微生物群落及植株生长。结果表明:与空白处理(CK)相比,YB706和BK8处理的木麻黄盆栽苗土壤碱解氮、速效磷显著增加,土壤全氮、全磷、全钾和速效钾无明显变化,幼苗株高分别增加59.1%和63.9%,BK8处理叶绿素含量提高81.9%。各处理平均颜色变化率(AWCD)呈现YB706>CK>BK8;除氨基酸类外,土壤微生物对不同碳源的利用率也表现为YB706>CK>BK8;经YB706和BK8处理的土壤微生物种类和数量均显著增加,除放线菌外,各类微生物PLFA总含量均为BK8>YB706>CK,与CK相比,土壤真菌/细菌有所提高。YB706和BK8处理的土壤微生物群落Simpson、Shannon、Brillouin和McIntosh指数均显著提高。表明外施YB706和BK8可促进木麻黄幼苗生长,且显著增加土壤速效养分含量,提高土壤微生物群落结构多样性,改善土壤微生物环境。  相似文献   
5.
Genetic transformation is a valuable and essential method that provides powerful insights into the gene function of microorganisms and contributes to the construction of engineered bacteria. Here, we developed a novel genetic transformation system to easily knock out a highly GC-rich gene (74.71% GC) from Burkholderia pyrrocinia JK-SH007, a biocontrol strain of poplar canker disease. This system revealed a reliable selectable marker (trimethoprim resistance gene, Tmp) and a simplified, efficient transformation method (6,363.64 CFU/μg, pHKT2) that was developed via freeze-thawing. The knockout recombineering of B. pyrrocinia JK-SH007 was achieved through a suicide plasmid with a three-fragment mutagenesis construct. The three-fragment cassette for mutagenesis was generated by overlap extension and touchdown PCRs and composed of Tmp flanked by GC-rich upstream and downstream fragments from B. pyrrocinia JK-SH007. The mutant strain (ΔBpEG), which was verified by PCR, lost 93.3% of its ability to degrade carboxymethyl cellulose over 40 days. Overall, this system may contribute to future research on B. pyrrocinia traits.  相似文献   
6.
7.
The impact of cranberry juice was investigated with respect to the initial adhesion of three isogenic strains of the bacterium Burkholderia cepacia with different extracellular polymeric substance (EPS) producing capacities, viz. a wild-type cepacian EPS producer PC184 and its mutant strains PC184rml with reduced EPS production and PC184bceK with a deficiency in EPS production. Adhesion experiments conducted in a parallel-plate flow chamber demonstrated that, in the absence of cranberry juice, strain PC184 had a significantly higher adhesive capacity compared to the mutant strains. In the presence of cranberry juice, the adhesive capacity of the EPS-producing strain PC184 was largely reduced, while cranberry juice had little impact on the adhesion behavior of either mutant strain. Thermodynamic modeling supported the results from adhesion experiments. Surface force apparatus (SFA) and scanning electron microscope (SEM) studies demonstrated a strong association between cranberry juice components and bacterial EPS. It was concluded that cranberry juice components could impact bacterial initial adhesion by adhering to the EPS and impairing the adhesive capacity of the cells, which provides an insight into the development of novel treatment strategies to block the biofilm formation associated with bacterial infection.  相似文献   
8.
Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883T (=CCUG 62895T). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42 °C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号