首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11248篇
  免费   996篇
  国内免费   541篇
  12785篇
  2024年   50篇
  2023年   301篇
  2022年   426篇
  2021年   683篇
  2020年   588篇
  2019年   662篇
  2018年   597篇
  2017年   432篇
  2016年   406篇
  2015年   515篇
  2014年   936篇
  2013年   1088篇
  2012年   639篇
  2011年   756篇
  2010年   397篇
  2009年   430篇
  2008年   469篇
  2007年   441篇
  2006年   429篇
  2005年   385篇
  2004年   265篇
  2003年   255篇
  2002年   232篇
  2001年   179篇
  2000年   121篇
  1999年   123篇
  1998年   103篇
  1997年   101篇
  1996年   80篇
  1995年   81篇
  1994年   94篇
  1993年   68篇
  1992年   57篇
  1991年   65篇
  1990年   28篇
  1989年   42篇
  1988年   19篇
  1987年   34篇
  1986年   17篇
  1985年   21篇
  1984年   26篇
  1983年   27篇
  1982年   26篇
  1981年   23篇
  1980年   15篇
  1979年   23篇
  1978年   9篇
  1976年   8篇
  1975年   4篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
1.
《Cell reports》2020,30(1):98-111.e5
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   
2.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   
3.
《Cell reports》2020,30(3):725-738.e4
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
4.
Combination agents comprising two different pharmacophores with the same biological target have the potential to show additive or synergistic activity. Bis(thiosemicarbazonato)copper(II) complexes (e.g. 64Cu-ATSM) and nitroimidazoles (e.g. 18F-MISO) are classes of tracer used for the delineation of tumor hypoxia by positron emission tomography (PET). Three nitroimidazole-bis(thiosemicarbazonato)copper(II) conjugates were produced in order to investigate their potential as combination hypoxia imaging agents. Two were derived from the known bifunctional bis(thiosemicarbazone) H2ATSM/A and the third from the new precursor diacetyl-2-(4-N-methyl-3-thiosemicarbazone)-3-(4-N-ethylamino-3-thiosemicarbazone) - H2ATSM/en. Oxygen-dependent uptake studies were performed using the 64Cu radiolabelled complexes in EMT6 carcinoma cells. All the complexes displayed appreciable hypoxia selectivity, with the nitroimidazole conjugates displaying greater selectivity than a simple propyl derivative used as a control. Participation of the nitroimidazole group in the trapping mechanism is indicated by the increased hypoxic uptake of the 2- vs. the 4-substituted 64Cu-ATSM/A derivatives. The 2-nitroimidazole derivative of 64Cu-ATSM/en demonstrated superior hypoxia selectivity to 64Cu-ATSM over the range of oxygen concentrations tested. Biodistribution of the radiolabelled 2-nitroimidazole conjugates was carried out in EMT6 tumor-bearing mice. The complexes showed significantly different uptake trends in comparison to each other and previously studied Cu-ATSM derivatives. Uptake of the Cu-ATSM/en conjugate in non-target organs was considerably lower than for derivatives based on Cu-ATSM/A.  相似文献   
5.
Okadaic acid (OA), a protein phosphatase inhibitor, was found to induce hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. The process was dose dependent. Vimentin phosphorylation was initially enhanced by 400 nM OA in 30 min and reached maximal level (about 26-fold) when cells were treated with 400 nM OA for 90 min. Upon removal of OA, dephosphorylation of the hyperphosphorylated vimentin was observed and the levels of phosphorylation returned to that of the controls after the cells recovered under normal growing conditions for 11 h. The phosphorylation and dephosphorylation of vimentin induced by OA concomitantly resulted in reversible reorganization of vimentin filaments and alteration of cell morphology. Cells rounded up as they were entering mitosis in the presence of OA and returned to normal appearance after 11 h of recovery. Immuno-staining with anti-vimentin antibody revealed that vimentin filaments were disassembled and clustered around the nucleus when the cells were treated with OA but subsequently returned to the filamentous states when OA was removed. Two-dimensional electrophoresis analysis further revealed that hyperphosphorylation of vimentin generated at least seven isoforms having different isoelectric points. Furthermore, the enhanced vimentin phosphorylation was accompanied by changes in the detergent-solubility of the protein. In untreated cells, the detergent-soluble and -insoluble vimentins were of equal amounts but the solubility could be increased when vimentins were hyperphosphorylated in the presence of OA. Taken together, the results indicated that OA could be involved in reversible hyperphosphorylation and reorganization of vimentin intermediate filaments, which may play an important role in the structure-function regulation of cytoskeleton in the cell.  相似文献   
6.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   
7.
《Cell reports》2020,30(7):2065-2074.e4
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   
8.
Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic divalent (AB2) and tetravalent (AB4) wedges. The binding of these multivalent protein constructs was studied on collagen-immobilized chip surfaces as well as to native collagen in rat intestinal tissues. To understand the importance of target density we also created collagen-mimicking surfaces by immobilizing synthetic collagen triple helical peptides at various densities on a chip surface. Multivalent display of a weak-binding variant (CNA35-Y175K) resulted in a large increase in collagen affinity, effectively restoring the collagen imaging capacities for the AB4 system. In addition, dissociation of these multivalent CNA35 dendrimers from collagen surfaces was found to be strongly attenuated.  相似文献   
9.
Carcinoma tissue consists of not only tumor cells but also fibroblasts, endothelial cells or vascular structures, and inflammatory cells forming the supportive tumor stroma. Therefore, the spatial distribution of proteins that promote growth and proliferation in these complex functional units is of high interest. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a newly developed technique that generates spatially resolved profiles of protein signals directly from thin tissue sections. Surface-enhanced laser desorption/ionization mass spectrometry (MS)combined with tissue microdissection allows analysis of defined parts of the tissue with a higher sensitivity and a broader mass range. Nevertheless, both MS-based techniques have a limited spatial resolution. IHC is a technique that allows a resolution down to the subcellular level. However, the detection and measurement of a specific protein expression level is possible only by semiquantitative methods. Moreover, prior knowledge about the identity of the proteins of interest is necessary. In this study, we combined all three techniques to gain highest spatial resolution, sensitivity, and quantitative information. We used frozen tissue from head and neck tumors and chose two exemplary proteins (HNP1–3 and S100A8) to highlight the advantages and disadvantages of each technique. It could be shown that the combination of these three techniques results in congruent but also synergetic data. (J Histochem Cytochem 58:929–937, 2010)  相似文献   
10.
Epidemiological evidence has suggested an association between meat consumption and the risk of breast cancer. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine found in cooked meat, has been implicated in the aetiology of breast cancer and has been shown to induce tumour formation in rodent mammary glands. In addition, polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (B[a]P) which has also been shown to induce tumour formation at a number of sites in rodents including the breast, are produced during the cooking of meat through the pyrolysis of fats. The aim of this study was to examine the bioavailability of these compounds to human breast tissue and their ability to bind to DNA to form DNA adducts. Patients undergoing breast surgery at York District Hospital were orally administered prior to surgery a capsule containing 20 μg of 14C PhIP (182 kBq, specific activity 2.05 GBq/mmol) or 5 μg of 14C B[a]P (36 kBq, specific activity 1.81 GBq/mmol). At surgery, normal and tumour breast tissue was resected and tissue concentrations of carcinogen measured by liquid scintillation counting and DNA adduct levels by accelerator mass spectrometry (AMS) were subsequently determined. It was found that both 14C PhIP and 14C B[a]P were able to reach the target organ where they had the ability to form DNA adducts. The level of adducts ranged from 26.22–477.35 and 6.61–208.38 adducts/1012 nucleotides following administration of 14C PhIP and 14C B[a]P, respectively, with no significant difference observed between levels in normal or tumour tissue. In addition, the data obtained in this study were comparable to adduct levels previously found in colon samples following administration of the same compounds to individuals undergoing colorectal surgery. This is the first report that these two carcinogens bind to human breast DNA after administration of a defined low dose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号