首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   8篇
  国内免费   4篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2017年   3篇
  2016年   1篇
  2015年   9篇
  2014年   11篇
  2013年   18篇
  2012年   14篇
  2011年   11篇
  2010年   14篇
  2009年   17篇
  2008年   32篇
  2007年   24篇
  2006年   17篇
  2005年   14篇
  2004年   13篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   10篇
  1998年   15篇
  1997年   15篇
  1996年   12篇
  1995年   11篇
  1994年   12篇
  1993年   15篇
  1992年   13篇
  1991年   19篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
1.
This study examines the role of neural inhibition in auditory spatial selectivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, using a two-tone inhibition paradigm. Two-tone inhibition decreases auditory spatial response areas but increases the slopes of directional sensitivity curves of inferior collicular neurons. Inferior collicular neurons have either directionally-selective or hemifield directional sensitivity curves. A directionally-selective curve always has a peak which is at least 50% larger than the minimum. A hemifield directional sensitivity curve rises from an ipsilateral angle by more than 50% and either reaches a plateau or declines by less than 50% over a range of contralateral angles. Two-tone inhibition does not change directionally-selective curves but changes most hemifield directional sensitivity curves into directionally-selective curves. Auditory spatial selectivity determined both with and without two-tone inhibition increases with increasing best-excitatory frequency. Sharpening of auditory spatial selectivity by two-tone inhibition is larger for neurons with smaller differences between excitatory and inhibitory best frequencies. The effect of two-tone inhibition on auditory spatial selectivity increases with increasing inhibitory tone intensity but decreases with increasing intertone interval. The implications of these findings in bat echolocation are discussed. Accepted: 18 January 2000  相似文献   
2.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   
3.
1. Behavioral experiments with jittering echoes examined acoustic images of sonar targets in the echolocating bat, Eptesicus fuscus, along the echo delay or target range axis. Echo phase, amplitude, bandwidth, and signal-to-noise ratio were manipulated to assess the underlying auditory processes for image formation. 2. Fine delay acuity is about 10 ns. Calibration and control procedures indicate that this represents temporal acuity rather than spectral discrimination. Jitter discrimination curves change in phase when the phase of one jittering echo is shifted by 180 degrees relative to the other, showing that echo phase is involved in delay estimation. At an echo detectability index of about 36 dB, fine acuity is 40 ns, which is approximately as predicted for the delay accuracy of an ideal receiver. 3. Compound performance curves for 0 degrees and 180 degrees phase conditions match the crosscorrelation function of the echoes. The locations of both 0 degrees and 180 degrees phase peaks in the performance curves shift along the time axis by an amount that matches neural amplitude-latency trading in Eptesicus, confirming a temporal basis for jitter discrimination.  相似文献   
4.
Summary The postembryonic development of the morphology and anatomy of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger is described. All the receptor cells are present in the subgenual organ, the intermediate organ and the crista acustica in the 1st larval instar. Generally, even in the 1st instar, the arrangement of the scolopidia in the three organs resembles the adult structure. The acoustic trachea, the tympana, the tympanal covers and the acoustic spiracle develop step by step in subsequent instars. The acoustic trachea resembles the adult structure for the first time in the 4th instar, although its volume is still small. The auditory threshold curves recorded from the tympanal nerve in instars 4, 5 and 6 show the same frequency maxima as those in the adult. The overall sensitivity significantly increases after the final moult. The dimensions of structures that lie within the crista acustica and that are probably involved in stimulus transduction and in frequency tuning have been analysed. The dorsal wall of the anterior trachea, the tectorial membrane and the cap cells have similar dimensions, especially in the last three instars and in adults.  相似文献   
5.
1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit.  相似文献   
6.
Summary Twenty four castrated male, 6 intact male, and 11 intact female Hyla cinerea were injected subcutaneously with 25 g arginine-vasotocin (AVT) and induced to call 1 h later in response to the playback of a conspecific mating call. Eighteen castrated males and 8 intact females were implanted 5 mg androgen pellets for 3 weeks prior to the neuropeptide injection. Among castrated males, 6/9 testosterone (T) implanted, 4/9 dihydrotestosterone (DHT) implanted and 2/6 non implanted individuals produced calls after being administered AVT. 5/6 intact non implanted males and 6/8 T intact implanted females also called, and 3 intact non implanted females remained silent after the injection. Evoked calls had a mid-frequency spectral peak at about 1900 Hz which is absent in field-recorded mating calls of this species. Calls of implanted females and castrated non implanted males were shorter than those of castrated implanted and intact non implanted males. Audiograms measured before hormone implants showed dips of enhanced sensitivity at about 0.5, 0.9 and 3.0 kHz in males and females. After AVT injection, thresholds at frequencies within the 0.7–1.5 kHz range were increased in castrated males. Such reduction in sensitivity points to an inhibition of the auditory system during hormone induced vocal activation.Abbreviations AVT arginine-vasotocin - DHT dihydrotestosterone - T testosterone - TS torus semicircularis  相似文献   
7.
Summary The responses of neurons in field L in the auditory neostriatum of the mynah bird, Gracula religiosa, were recorded during presentation of intact or manipulated mimic voices. A typical mimic voice konnichiwa elicited responses in most of the neurons. Neurons in the input layer (L2) of field L showed many peaks on peristimulus time histograms while those in other layers (L1 and L3) exhibited only one or two peaks. Several neurons in L1 and L3 responded only to the affricative consonant /t/ in the intact mimic voices. They did not respond to the affricative consonant in the isolated segment or to the one in the playbacked voice in reverse. Forty-five percent of the neurons (33/ 73) decreased in firing rates at the affricative consonant in the isolated segment compared with in the intact voice. Some of these neurons, in which neither the affricative consonant in the isolated segment nor bursts of noise alone elicited responses, exhibited clear phasic responses to /t/ in the case when bursts of noise with particular central frequencies preceded the affricative consonant. The responsiveness of these neurons appears to receive temporal facilitation. These results suggest that these neurons code the temporal relationship of speech sound.Abbreviations HVc hyperstriatum ventrale, pars caudale - TFN temporally facilitated neuron - TSN temporally suppressed neuron  相似文献   
8.
Summary Sexual dimorphism of the ear of an undescribed species of zaprochiline tettigoniid is described. The internal trachea, dedicated to hearing in other tettigoniids, is unmodified in the male but fully developed in the female. The external auditory spiracle is also lost in the male. In contrast, there is no difference between the sexes in the number of sensilla within the hearing organ. The male is 10 dB less sensitive than the female. The characteristic frequency of the hearing organ at 35 kHz does not match the carrier frequency of the male's call at 51 kHz. As a result of this mismatch the female is remarkably insensitive to the male's call (threshold at 75 dB SPL), and the male is even less sensitive (thresholds80 dB SPL). In nature this provides a maximum hearing range of the male of less than 50 cm.  相似文献   
9.
B W Newton  B E Maley 《Peptides》1985,6(2):301-306
The distribution of neurotensin-like immunoreactive (NT-LI) fibers and cell bodies in the area postrema (AP) of rat and cat, utilizing the peroxidase, antiperoxidase (PAP) technique, is described. In the rat, the greatest accumulation of NT-LI fibers were present along the borders of the AP, while there were very few NT-LI fibers in central regions. In the cat, scattered NT-LI fibers occupied the majority of the central AP, while moderate numbers of NT-LI fibers were present at the ventromedial border. In more rostral cat AP levels, the number of NT-LI fibers decreased. NT-LI somata were present in rat AP, but were lacking in cat AP. The localization of NT within the AP suggests that the cardiovascular and gastric effects attributed to NT may be mediated, in part, through the AP.  相似文献   
10.
Intracellular recordings were made in the brain of the cricket Gryllus bimaculatus from an ascending auditory interneuron (AN1). Acoustic stimuli with calling song temporal pattern were delivered via earphones in a preparation with the acoustic trachea cut (attenuation of crossing sound > 30 dB). The input-output function of this cell was then determined by recording its responses to stimulation of the ipsilateral ear alone, of the contralateral ear alone and to stimulation of both ears simultaneously with the same or different carrier frequencies and intensities.This interneuron was excited by the ear ipsilateral to its axon and dendritic field and unresponsive to stimuli presented to the axon-contralateral ear alone. However, in binaural stimulation experiments, the response to a constant ipsilateral stimulus was progressively reduced as the intensity of a simultaneous contralateral stimulus was increased, above a threshold intensity.Tuning curves for threshold of this inhibition, determined in binaural stimulation experiments, indicated significant inhibition in the range 3–20 kHz with lowest threshold at 4–5 kHz. The inhibition was unaffected by sectioning of the contralateral circumoesophageal or neck connective, indicating that the inhibitory influence crosses the midline at the level of the prothoracic ganglion. Intracellular recordings from AN1 in the prothoracic ganglion confirmed that it was indeed neurally inhibited by inputs from the contralateral ear.Tuning curves for excitation of an omega neuron (ON1) by the ear ipsilateral to its soma and also the tuning of inhibition of ON1 by its contralateral ON1 partner, closely match the tuning of inhibition of AN1 and to a lesser extent, of AN2. This was taken as evidence that each AN1 is inhibited by the contralateral ON1. The significance of this interaction for directional hearing and phonotaxis is discussed.Abbreviations AP/CHP action potentials per chirp - AN1, AN2 ascending auditory interneurons 1, 2 - ON1 omega neuron 1 - ipsi ipsilateral contra contralateral - PTG prothoracic ganglion loc lateral ocellar nerve - On optic nerve an antennal nerve - coc circum-oesophageal connective so sound off  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号