首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
  2023年   7篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
本文对双磷酸盐、狄诺塞麦、Sagopilone等特异性靶向药物在乳腺癌骨转移靶向治疗中的作用机制、临床应用、临床疗效等方面的相关研究进展情况进行了简要阐述。双磷酸盐在抑制骨转移和非骨转移中发挥作用,狄诺塞麦可能成为双磷酸盐的合理替代物,尤其在双磷酸盐治疗效果不佳的病人中,而新型抗癌药物Sagopilone、骨唾液酸蛋白抑制剂亦可通过多种机制参与乳腺癌转移过程,具有抑制骨转移的巨大潜力。  相似文献   
2.
Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [(14)C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over the 1-50microM dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.  相似文献   
3.
Coordination properties toward Fe(III) and Al(III) of a mixed bisphosphonate-hydroxypyridinonate ligand are presented. Potentiometric, spectrophotometric and NMR results allowed to conclude that Fe(III) and Al(III) coordination takes place on the pyridinone moiety. The high steric hindrance prevents the possibility of simultaneous coordination of both groups to the same metal ion. Quantum mechanical calculations confirm this finding allowing to determine the minimal length of the linker necessary for a stable conformation of complexes in which Fe(III) is coordinated both by pyridinone and bisphosphonate groups.  相似文献   
4.
Derivatives of aminomethylenebisphosphonic acids constitute a class of promising herbicides. More than 40 N-substituted aminomethylenephosphonic acids were synthesized and evaluated for their herbicidal activity on common cress (Lepidium sativum L.) and cucumber (Cucumis sativus L.). Some of the tested compounds were found to exhibit strong herbicidal properties being equal in activity with the popular herbicide glyphosate as well as parent N-pyridylaminomethylenephosphonic acids. N-Substituted iminodi(methylenephosphonic) acids, which may be considered as close analog of glyphosate, were inactive toward test plants. Received October 25, 1996; accepted May 9, 1997  相似文献   
5.
We have investigated the effect of Alendronate and Pamidronate, two bisphosphonates widely employed for the treatment of pathologies related to bone loss, on the setting properties and in vitro bioactivity of a calcium phosphate bone cement. The cement composition includes α-tricalcium phosphate (α-TCP) (90 wt%), nanocrystalline hydroxyapatite (5 wt%) and CaHPO4 · 2H2O (5 wt%). Disodium Alendronate and disodium Pamidronate were added to the liquid phase (bidistilled water) at two different concentrations: 0.4 and 1 mM (AL0.4, AL1.0, PAM0.4, PAM1.0). Both the initial and the final setting times of the bisphosphonate-containing cements increase with respect to the control cement. X-ray diffraction analysis, mechanical tests, and SEM investigations were carried out on the cements after different times of soaking in physiological solution. The rate of transformation of α-TCP into calcium deficient hydroxyapatite, as well as the microstructure of the cements, is not affected by the presence of Alendronate and Pamidronate. At variance, the bisphosphonates provoke a modest worsening of the mechanical properties. MG63 osteoblasts grown on the cements show a normal morphology and biological tests demonstrate very good rate of proliferation and viability in every experimental time. In particular, both Alendronate and Pamidronate promote osteoblast proliferation and differentiation, whereas they inhibit osteoclastogenesis and osteoclast function.  相似文献   
6.
We investigated the existence of a bisphosphonate (BP) target site in osteoblasts. Binding assays using [3H]-olpadronate ([3H]OPD) in whole cells showed the presence of specific, saturable and high affinity binding for OPD (Kd = 1.39 ± 0.33 μM) in osteoblasts. [3H]OPD was displaced from its binding site by micromolar concentrations of lidadronate, alendronate and etidronate (Kd = 1.42 ± 0.15 μM, 2.00 ± 0.2 μM and 2.4 ± 0.4 μM, respectively), and by millimolar concentrations of the non-permeant protein phosphatase (PP) substrates p-nitrophenylphosphate and α-naphtylphosphate. PP inhibitors orthovanadate, NaF or vpb(bipy) did not displace [3H]OPD.As expected, specific OPD binding was detected in the plasma membrane of ROS 17/2.8 cells, although significant BP binding was also found intracellularly. Moreover, OPD increased DNA synthesis in these cells with a temporal profile similar to the protein tyrosine phosphatase (PTP) inhibitors, Na3VO4 and vpb(bipy); but different from a general PP inhibitor (NaF). The stimulatory effect of OPD and PTP inhibitors on osteoblast proliferation was inhibited by the protein tyrosine kinase inhibitors genistein and geldanamycin. These results provide new evidence on the existence of a BP target in osteoblastic cells, presumably a PTP, which may be involved in the stimulatory action of BPs on osteoblast proliferation.  相似文献   
7.
As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED50 value of 4.7 μM against tachyzoites of T. gondii and an IC50 of 0.051 μM against TgFPPS.  相似文献   
8.
《Cytokine》2015,72(2):154-160
Bisphosphonates (BPs) have been shown to influence angiogenesis. This may contribute to BP-associated side-effects such as osteonecrosis of the jaw (ONJ) or atypical femoral fractures (AFF). The effect of BPs on the production of angiogenic factors by osteoblasts is unclear. The aims were to investigate the effect of (1) alendronate on circulating angiogenic factors; vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) in vivo and (2) zoledronate and alendronate on the production of VEGF and ANG-1 by osteoblasts in vitro. We studied 18 post-menopausal women with T score  −2 randomized to calcium/vitamin D only (control arm, n = 8) or calcium/vitamin D and alendronate 70 mg weekly (treatment arm, n = 10). Circulating concentrations of VEGF and ANG-1 were measured at baseline, 3, 6 and 12 months. Two human osteoblastic cell lines (MG-63 and HCC1) and a murine osteocytic cell line (MLO-Y4) were treated with zoledronate or alendronate at concentrations of 10−12–10−6 M. VEGF and ANG-1 were measured in the cell culture supernatant. We observed a trend towards a decline in VEGF and ANG-1 at 6 and 12 months following treatment with alendronate (p = 0.08). Production of VEGF and ANG-1 by the MG-63 and HCC1 cells decreased significantly by 34–39% (p < 0.01) following treatment with zoledronate (10−9–10−6 M). Treatment of the MG-63 cells with alendronate (10−7 and 10−6) led to a smaller decrease (25–28%) in VEGF (p < 0.05). Zoledronate (10−10–106 M) suppressed the production of ANG-1 by MG-63 cells with a decrease of 43–49% (p < 0.01). Co-treatment with calcitriol (10−8 M) partially reversed this zoledronate-induced inhibition. BPs suppress osteoblastic production of angiogenic factors. This may explain, in part, the pathogenesis of the BP-associated side-effects.  相似文献   
9.
10.
Bisphosphonates (BPs) are drugs widely used in the treatment of various bone diseases. BPs localize to bone mineral, and their concentration in resorption lacunae could reach almost milimolar levels. Bone alkaline phosphatase (ALP) is a membrane-bound exoenzyme that has been implicated in bone formation and mineralization. In this study, we investigated the possible direct effect of three N-containing BPs (alendronate, pamidronate, and zoledronate) on the specific activity of bone ALP obtained from an extract of UMR106 rat osteosarcoma cells. Enzymatic activity was measured by spectrophotometric detection of p-nitrophenol product and by in situ visualization of ALP bands after an electrophoresis on cellulose acetate gels. Because ALP is a metalloprotein that contains Zn2+ and Mg2+, both of which are necessary for catalytic function, we also evaluated the participation of these divalent cations in the possible effect of BPs on enzymatic activity. All BPs tested were found to dose-dependently inhibit spectrophotometrically measured ALP activity (93–42% of basal) at concentrations of BPs between 10−5 M and 10−4 M, the order of potency being zoledronate ≊ alendronate > pamidronate. However, coincubation with excess Zn2+ or Mg2+ completely abolished this inhibitory effect. Electrophoretic analysis rendered very similar results: namely a decrease in the enzymatic activity of the bone-ALP band by BPs and a reversion of this inhibition by divalent cations. This study shows that N-containing BPs directly inhibit bone-ALP activity, in a concentration range to which this exoenzyme is probably exposed in vivo. In addition, this inhibitory effect is most possibly the result of the chelation of Zn2+ and Mg2+ ions by BPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号