首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   5篇
  2020年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
The composite filler micro-embedded with Pseudomonas putida (P. putida) was prepared and the biodegradation performance of the filler was evaluated in a biofilter. Five phases were set up to evaluate the performance of the biofilter under different toluene inlet loadings and transient shock loadings. In particular, the microbial community structure in the biofilms and fillers was measured by sequence analysis of the 16S rRNA gene. The results show that the biofilter packed with the composite fillers was suitable for the biodegradation of toluene. The biofilter could start up quickly with high removal efficiency (RE), and remain above 90 % RE when the empty bed residence time (EBRT) was 18 s and the inlet loading rates were not higher than 41.4 g/(m3·h). Moreover, the biofilter could tolerate substantial transient shock loadings. The high removal efficiency and elimination capacity contributed to rich bacterial communities for the efficient degradation of toluene. The dominant microbial communities at the phylum level were mainly Firmicutes, Actinobacteria and Proteobacteria. It is noteworthy that the abundance of Bacteroidetes at phylum level and Chungangia and Stenotrophomonas at genus level increased significantly during the re-start period.  相似文献   
2.
To establish an economical and environmentally friendly technology for ethylene removal from horticultural facilities and industrial point sources, a bench-scale natural zeolite biofiltration system was developed in this study. The system was evaluated for its performance in removing ethylene from an artificially contaminated air stream and characterized for its bacterial diversity under varied ethylene concentrations, and in different spatial stages of the filter. The biofilter enabled to approximately 100% remove ethylene at loading rates of 0.26-3.76 g m−3 h−1 when operated with inoculum containing enriched ethylene-degrading bacteria. The bacterial diversity and abundance varied with the height of the biofilter. Moreover, the occurrence and predominance of specific bacterial species varied with the concentrations of ethylene introduced into the biofilter, as observed by PCR-DGGE methods. Phylogenetic analysis indicated that the biofilter system supported a diverse community of ethylene-degrading bacteria, with high similarity to species in the classes Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria.  相似文献   
3.
从实验室生物滤塔填料的生物膜上, 经选择性培养基筛选, 分离出4株好氧反硝化菌。好氧状态下4种菌的40 h反硝化率均大于80%, 其中菌种A1反硝化率可达到99.05%。跟踪菌种反硝化过程中氮元素24 h变化过程, 发现4株菌除A1外都有亚硝酸根积累。菌种A1为短杆菌, 革兰氏阴性。生理生化特性研究与16S rDNA 序列测定(GenBank接受号DQ836052.1)初步判定菌种A1为假单胞菌Pseudomonas putida。适于菌A1生长的初始pH值是7.0左右, 温度30℃左右, 当DO大于2.0 mg/L时, DO的变化对菌种A1的反硝化效果影响很小。  相似文献   
4.
A biofilter composed of yeasts and cassava peel was used to detoxify fertilizer plant effluent. The biological oxygen demand was reduced on treatment from a range of 1200–1400 mg/l to a range 135–404 mg/l. The ammonia-nitrogen (NH3–N) and nitrate-nitrogen (NO3–N) were reduced after treatment from 1000 to 10 mg/l and from 100 to 17.6 mg/l, respectively. The biofilter is simple and easy to handle with high efficiency of 98%.  相似文献   
5.
The performance of a polyurethane (PU) biofilter inoculated with Rhodococcus sp. EH831 was evaluated under different transient loading conditions, such as shutdown, intermittent and fluctuating loading. A mixture of benzene and toluene vapors was employed as model pollutants. When the biofilter was restarted after a 2 week-shutdown, during which neither clean air nor water was supplied, the benzene and toluene removal capacities were rapidly restored after a re-adaptation period of only 1 day. A comparison of the removal capacity under continuous and intermittent loading revealed that constant and periodic loading (8 h on/16 h off per day) and a 2 day-shutdown did not significantly influence the biofilter performance, although the removals of benzene and toluene were relatively unstable and lower under intermittent loading during the initial week. The result of quantitative real-time PCR showed that Rhodococcus sp. EH831 could be maintained during transient loading periods (1010–1011 CFU/g-dry PU) irrespective of the different operating conditions.  相似文献   
6.
Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20–100 mg m−3. Removal efficiencies of BFC and BFS were in the range of 97–99% and 95–99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH3 in the resultant acidity. Nitrate was the dominant product of NH3 transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.  相似文献   
7.
The bacterial community structure in a biofilter treating ethanol was investigated using community level physiological profiling. Laboratory scale biofilters of two sizes (5 or 11.5 cm internal diameter with 30 or 67 cm packed height, respectively) were packed with compost and a humidified airstream loaded with ethanol passed through them. Good removal efficiencies (82–100%) and elimination capacities (49–205 g ethanol m − 3 h − 1) were observed in all units. Compost packing media samples were extracted and the community level physiological profiles assayed using Biolog Ecoplates. The community structure was found to be similar over a range of a few centimetres. No differences were observed between sample sizes of 0.5–1 and 6 g, and therefore, the smaller sample size (typical of that used in previous studies) is appropriate for use in the future. Two studies of parallel systems showed that the community structure diverged during the acclimation period (10 days) in one pair, but in another pair, no divergence was observed and a similar shift in community profile was observed in both units between 25 and 40 days of operation. Community level physiological profiling with Biolog Ecoplates is a useful method for detecting differences between and changes within the bacterial communities in biofilters.  相似文献   
8.
A pilot-scale mobile biofilter was developed where two types of wood chips (western cedar and 2 in. hardwood) were examined to treat odor emissions from a deep-pit swine finishing facility in central Iowa. The biofilters were operated continuously for 13 weeks at different air flow rates resulting in a variable empty bed residence time (EBRT) from 1.6 to 7.3 s. During this test period, solid-phase microextraction (SPME) PDMS/DVB 65 microm fibers were used to extract volatile organic compounds (VOCs) from both the control plenum and biofilter treatments. Analyses of VOCs were carried out using a multidimentional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O) system. Results indicated that both types of chips achieved significant reductions in p-cresol, phenol, indole and skatole which represent some of the most odorous and odor-defining compounds known for swine facilities. The results also showed that maintaining proper moisture content is critical to the success of wood-chip based biofilters and that this factor is more important than media depth and residence time.  相似文献   
9.
Removal of hexane from air–hexane mixtures in biofilters packed with different solid media under nitrogen supplementation was performed for 70 days. Two columns containing Perlite or a mixture of peat and Perlite, were used. The solid media were supplemented with nitrogen source up to 1 kg/m3 per week for high nutrient supplementation and 0.2 kg/m3 per month for low nutrient supplementation. A high rate of hexane removal: 95 g/m3 h was achieved under high nutrient supplementation, high air flow rate and high hexane concentration. However, the percentage of hexane removal decreased with increasing air flow rate and hexane inlet concentration. For high nutrient supplementation the type of solid medium did not significantly affect the biodegradation capacity. With low nutrient supplementation, the highest removal rate was achieved in the column containing the peat–perlite mixture. The column containing perlite had a significantly lower pressure drop (20 Pa/m) than the 2400–2930 Pa/m observed for the column containing the mixture. Perlite offers an opportunity of running a biofiltration process at a lower and stable pressure drop if the nutrient supplementation is managed properly.  相似文献   
10.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号